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ABSTRACT
Web services have proven to be a viable solution for inter-
operability issues. Since end users do not buy services, but
only interact with them remotely, such complex systems end
up having a distributed ownership, meaning different parts
of a system can evolve independently. This has brought
researchers to concentrate on run-time management issues
such as dynamic monitoring and self-recovery.

However, we advocate that no silver bullet has been found.
All the major approaches have advantages and disadvan-
tages. In this paper we propose a unified framework for
monitoring and recovery that provides a clear separation be-
tween data collection and analysis, a common management
infrastructure, and a common recovery system. Separating
monitoring from recovery allows the framework to integrate
different monitoring approaches seamlessly through a plug-
in approach. The common management infrastructure al-
lows us to dynamically manage the multiple monitoring ap-
proaches being used, while the common recovery approach
allows us to activate advanced recovery techniques both on
process instances and process definitions.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program
verification—Assertion checkers, Reliability; D.2.5 [Software
Engineering]: Testing and Debugging—Monitors, Error
handling and recovery

General Terms
Design, Verification, Management

Keywords
web services, BPEL, quality of service, monitoring, recovery
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Service Oriented Architectures are a proven architectural
style for the creation and execution of large and complex dis-
tributed systems. Among the various existing service tech-
nologies, Web services happen to have a very florid research
community. They can be seen as black-box components that
are deployed on the web, and accessed using standard web
protocols. However, they have a very distinct peculiarity:
they remain under the service provider’s jurisdiction at all
time. Clients do not acquire the component, they just in-
teract with it remotely. Although it is just a small technical
difference, this change has profound consequences on how a
system is designed and managed.

First of all, design mainly consists in choosing and com-
posing services that are provided remotely by third par-
ties. The BPEL standard (Business Process Execution Lan-
guage) [2] is a good example, as it has imposed itself as the
de-facto way of composing services into orchestrated pro-
cesses. The delegation of key aspects of a system to a third
party means that we need to believe it will contribute to the
system’s overall functionality and quality of service (QoS).
Unfortunately, since remote services are free to evolve inde-
pendently of the main application, and since design by con-
tract is not a common practice amongst service developers
(providers seldom give more than a syntactical specification
of a service’s interface), even a modification of the service,
considered to be an improvement by the provider, can be
harmful to the system. Second, although services have often
been intended as merely a means to solve interoperability is-
sues in business to business scenarios, they have also begun
to emerge as a valid approach for novel computing mod-
els, such as pervasive computing, ambient-intelligence, and
context-aware computing [8]. In these models it is important
to be able to modify a system’s behavior at run time, taking
decisions based on the situation at hand. This is facilitated
by dynamic binding techniques. For example, BPEL allows
the definition of abstract processes, and allows the actual
service endpoints to be discovered at run time. The result
is that, at design time, it is practically impossible to have a
complete vision of the system, and of the configurations it
may assume at run time. Classical validation steps, such as
static verification and testing, are no longer sufficient, and
demand that we consider run-time management. Indeed, in
the last few years research has rightfully concentrated on so-
lutions for guaranteeing QoS in such dynamic scenarios. In
particular, run-time monitoring of service compositions has
been the focus of much discussion.

The goal of monitoring a service composition is to become
aware of any erroneous behaviors the system may have dur-
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ing execution. It is beneficial since we do not need to wait
for the system to crash before trying to adapt its behav-
ior. Many approaches have been proposed, with different
advantages and disadvantages. They mainly differ in the re-
quirements they deem important. For example, some claim
that monitoring should be a non-intrusive operation [12],
as to not disrupt the execution, while others profess that
monitoring can be intrusive if this allows us to be more
timely in discovering failures [6]. In this paper we advo-
cate that no silver bullet for monitoring and recovery has
been achieved. The advantages and disadvantages of the
different approaches are undeniable, meaning that none is
perfect and that none should be entirely ruled out. Given
our extensive experience in the field [6, 4, 7], we propose to
address the problem by means of a unified monitoring and
recovery framework for BPEL processes. In this paper, we
will give a snapshot of our ongoing work, stressing the over-
all picture and underlining the main open issues that remain
to be conquered.

Our vision for a unified framework builds upon three main
pillars. First of all, the framework should decouple data col-
lection from data analysis. In fact, a uniform data collection
model would allow the integration of many different analysis
techniques, allowing us to exploit their main benefits. Sec-
ond, the framework should provide a common management
infrastructure, for organizing how the different approaches
fit together, and for tailoring how much monitoring is being
achieved. Third, the framework should also provide a com-
mon infrastructure for the recovery of the BPEL processes.
Our goal is to encourage advanced research in self-recovery
techniques by offering a testbed framework.

We believe that the framework will allow us to integrate
our previous efforts in this fields, and to evaluate the benefits
of having complex monitoring strategies that mix different
approaches. The rest of the paper is organized as follows.
Section 2 presents both the authors’ existing body of work
and the current state of the art in monitoring and recovery
of service based systems. Section 3 introduces the unified
framework, while Section 4 concludes the paper by giving
a clear picture of the work that has been achieved and the
work that still remains to be completed.

2. STATE OF THE ART
Current BPEL engine implementations, such as Active-

BPEL [1] are inherently static and they only support prim-
itive forms of probing and exception handling. Probing ca-
pabilities are limited to internal variables and timeouts, and
any reaction to exceptional behaviors must be intertwined
and deployed with the main execution flow. There is no
way to customize the reaction of the system with respect to
context information and user requests.

To overcome these limitations different monitoring and
recovery techniques were proposed. Monitoring approaches
can be classified in several different ways: timeliness, inva-
siveness, nature of verifiable properties, etc. Our goal here
is not to give a complete and precise presentation of all the
existing monitoring and recovery approaches, but to give a
flavor for what researches have accomplished, and how none
of them provides an exhaustive solution. Due to space con-
straints we have chosen to dedicate slightly more space to
the authors’ body of previous work. The choice was made
to give the reader the minimum amount of detail needed to
appreciate the rationale of the rest of the paper.

The authors proposed the Dynamo framework [6, 5] for
the monitoring of BPEL processes. This work assumes that
designers not rely on providers giving formal specifications
of their services, but adopt a defensive approach to design-
ing their processes. Using a specially defined constraint lan-
guage (WSCoL), designers are asked to define punctual as-
sertions (pre- and post-conditions) on the interactions the
process has with its partner services. These assertions are
maintained separate from the business logic, and Dynamo
used AOP (Aspect Oriented Programming) [11] techniques
to weave the verification activities into the execution at run
time. In practice, Dynamo uses a synchronous approach in
which the process is temporarily stopped while the asser-
tion is verified. Although quite an invasive approach, and
potentially detrimental for performance, anomalies are de-
tected as soon as they occur, leaving the system in the most
appropriate state to perform self-recovery.

The authors continued their work with the introduction
of a completely new approach based on the ALBERT (As-
sertion Language for BpEl inteRacTions) [4]. Using this
assertion language, designers are required to define process
invariants. Once again, the assertions are kept separate from
the business logic, and AOP techniques are used to bridge
the process’ normal execution and the monitoring activi-
ties. The main difference with respect to WSCoL is that
ALBERT adds temporal predicates and temporal functions.
In this paper we do not focus on how ALBERT works and
handles the verification of temporal logic properties, but in-
terested readers can find an in-depth example in [4]. Since
temporal properties are no longer punctual, they cannot be
checked in a single state and they need to be verified over
time. As a consequence, the process is only stopped mo-
mentarily to gather information, effectively minimizing the
degree of invasiveness. The run-time verification, on the
other hand, is achieved in a parallel thread. The main dis-
advantage is the anomalies are detected when the process
is already beyond the state in which it might make sense
to perform recovery. Rollback techniques are being investi-
gated, but this is a research topic in itself.

If we look at approaches that have proposed by others, it
makes sense for many of them to be integrated in a unified
framework such as the one we are building. For example,
Erradi et al. [10] propose to analyze how a system behaves
with respect to the intersection of client-side and provider-
side policies expressed using WS-Policy. Mahbub et al. [12],
on the other hand, collect system execution events, place
them in a persistent storage, and perform off-line analysis
based on a form of event calculus.

The authors have also tackled the run-time recovery of
BPEL processes [7]. Using a special recovery definition lan-
guage (WSReL), designers can pick from a set of pre-defined
atomic recovery actions to combine them and build more
complex recovery strategies. In the approach, all atomic ac-
tions have process instance validity, meaning no recovery is
performed on the process definition itself.

Recovery has received, in general, less attention from the
research community. For example, we are still far from
having adequate solutions for issues such as dynamic in-
stance/class re-configuration or process rollback. On the
other hand, there has been work in the field of dynamic re-
binding. For example, Ardagna et al. [3] propose the PAWS
(Processes and Adaptive Web Services) framework, in which
services are dynamically chosen in order to optimize given
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Figure 1: The Unified Framework.

QoS levels. Colombo et al. [9], on the other hand, choose
their partner services depending on SLA definitions. They
use an ECA (Event-Condition-Action) rule system to dis-
cover when an SLA infringement occurs, and to switch to a
service that can allow the system to proceed in its normal
execution.

3. TOWARDS A UNIFIED FRAMEWORK
A unified supervision framework (i.e., monitoring and re-

covery) for BPEL processes requires a common data col-
lection model, a common management infrastructure, and
a common recovery framework. On the other hand, data
analysis techniques can be added in a pluggable fashion. A
tentative high-level run-time architecture is given in Figure
1. It reflects the conceptual separation of concerns between
data collection, data analysis, and recovery.
Data collection exploits two kinds of data probes. The

first kind is AOP probes. These probes are directly con-
nected to the process’ execution environment using AOP
techniques. They briefly stop a running process to gather
its internal state of execution. The only downside is that to
produce the AOP probes we need to have access to the BPEL
engine’s source code. (Our current implementation uses the
latest version of ActiveBPEL’s engine.) The second kind is
external probes. These probes can be conveniently placed
throughout the environment to gather run-time context in-
formation. The advantage of such probes is they can be used
regardless of the execution environment chosen. For exam-
ple, they can be placed on the engine’s transport channels
to gain information about the data it is exchanging with its
partners, or they can be used to listen to an engine’s run-
time events. The difference with AOP probes is that they
cannot be used to capture internal data changes, for example
due to BPEL Assign activities.
Once the data has been collected, they are time-stamped

and placed in the Data Pool. This is currently implemented
using tuple space technology, allowing us to separate data

collection from the other two main activities: data analysis
and process recovery.
The Monitoring component is configured to react to the

presence of certain data within the data pool. When the
data appears, they are passed to the appropriate monitoring
plugins which proceed to perform analysis. Completed the
analysis, the results are placed in the data pool for three
reasons. The first is to resume a blocked process. This
occurs when the nature of the analysis is synchronous (e.g.
a pre- or post-condition on a BPEL Invoke activity). The
second is to share partial analysis results between montioring
plugins, while the third is to activate recovery.
Finally, the environment provides a uniform Recovery sys-

tem, based upon pluggable atomic recovery caabilities that
have access to the process execution using AOP hooks. This
allows them to change the way the process will play out from
that point on.
We will now discuss the three main pillars upon which

the unified framework stands: the separation of concerns
between data collection and data analysis, a common man-
agement infrastructure, and a common recovery framework.

3.1 Data Collection vs. Data Analysis
To have a complete view of the system, we are interested

in data extracted from the process’ state, from the environ-
ment in which it is being run, and from historical traces of
previous executions. In our current implementation we dis-
tinguish between two kinds of data (internal and external).
For the former, designers must indicate what data they want
as well as the location in the process in which it is to be col-
lected. AOP probes are then used to stop the process at the
defined location, and to gather the required data. For the
latter we gather data from sources that are external to the
process execution, i.e., from probes that are conveniently
placed for monitoring purposes. This is needed when the
correctness of a system depends on the context in which it
is being run. Regarding external data we allow two kinds
of collection: sychnronous and asynchronous. In the first
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case, a designer must indicate the location in the process in
which the data needs to be collected. This is necessary when
the external data we collect depends on data coming from
within the process. For example, an external data collector
could be used to transform internal data depending on con-
text information. In the second case, the external probe is
configured to periodically collect the data and to place them
in the data pool.

On top of defining how and when data needs to be col-
lected, designers must specify persistance policies for the
data that is added to the data pool. This allows us to avoid
an uncontrolled growth of the pool, as well as to define the
historical traces needed by monitoring apporaches that pred-
icate on data sequences, such as Albert. Current policies can
be single instance, in which the pool overwrites previous
data when a new instance arrives, time-frame, in which the
pool maintains a single data for a given amount of time, or
space-frame, in which the pool maintains a single data up
to a threshold amount of new data instance arrivals. More
policies can be added subsequently.

Thanks to clear and powerful data collection mechanisms,
and to a plug-in-based architecture, the unified framework
can exploit many different monitoring approaches. Notice
that one of the advantages of having a clear separation of
concerns between data collection and data analysis is that
it allows us to share data collected from various processes,
and to define cross-process analysis. Another advantage is
that it allows us to optimze the data collection step, since
data placed in the pool can be shared by more than one data
analysis technique. As previously stated, we mainly distin-
guish between synchronous and asynchronous data analysis.
The synchronous case is quite simple, and we have already
prototyped it with our WSCoL plug-in. In this case, the pro-
cess simply waits for the punctual assertion to be checked,
and for the results to appear in the data pool. The asyn-
chronous case, however, is more difficult. In this case we are
interested in simply forwarding the data to the monitoring
plug-in, and in allowing the process to continue its normal
execution. (We have prototyped this with the ALBERT
plug-in, and it could easily be done with other approaches
as well, such as Mahbub et al.’s.)

3.2 Management
The advantages of having more than one monitoring ap-

proach running at the same time lay in how these can be
dynamically controlled through a unified management in-
frastructure. Our goal is to have a means of dynamically
modifying the amount and the nature of the monitoring ac-
tivities being performed. The reasons can be manifold: a
particular moment in the process’ life-cycle, the context in
which the process is being run, etc. For example, during a
process’ lifetime we might decide to start with an invasive
approach to discover anomalies in a very timely fashion, and
after a while switch some activities over to an asynchronous
approach to favor performance. On the other hand, should
the asynchronous approach capture an anomaly we could al-
ways switch back to a more punctual and timely synchronous
approach.

The way we are currently achieving this is to associate
each monitoring activity with meta-level information that
can be used at run time to determine whether it should be
performed or not. For example, each activity can be given
a priority level, while a run-time threshold value could be

used to separate those that need to be executed from those
that don’t. Other meta-level information could indicate that
a monitoring activity needs to be performed with a given
frequency, or within a given time frame. All these meta-
level information are made accessible through the monitor-
ing component, to guarantee that they can be modified after
the process has been deployed. This allows these values to
be changed as a reaction to an anomalous behavior. We
are also investigating a high level management language for
defining complex monitoring strategies. This will allow us
to more easily combine completely different monitoring tech-
niques, such as statistical analysis or post-mortem analysis,
with a synchronous approach such as the one used in Dy-
namo. Hopefully, the unified framework will provide just
the testbed we need to understand the intricacies and the
advantages of having a complex interplay of different kinds
of monitoring techniques.

3.3 Recovery
Finally, the third pillar is a common infrastructure for pro-

cess recovery. Once again the use of a plug-in architecture is
beneficial, since it allows the infrastructure to be extensible
with respect to its actual capabilities. As we have already
stated, not much advanced research has been achieved in
terms of recovery. Therefore, one of our goals is to provide
an ideal testbed for fostering new ideas. The advantages of
providing a well-established AOP mechanism for interacting
with the executing process are evident.

We will allow designers to add new atomic recovery ac-
tions, to experiment with recovery techniques. In particu-
lar, we are interested in exploring techniques that operate
not on the process instance itself, but on the process class.
For example, planning techniques could be used to evolve
the process definition, to allow it to cope with situations
that were not even contemplated during the process’ design
phase. Obviously, the recovery framework will also have
special atomic actions for accessing the management infras-
tructure. This will allow the overall degree of monitoring,
both in terms of activities being performed and approaches
being used, to be automatically set depending on how the
process is doing.

The use of various monitoring techniques can cause sev-
eral problems, since they can make different, complementary
and probably conflicting, decisions. We need to establish
clear rules for deciding when and which recovery strategies
are activated. A preliminary solution is to activate recovery
strategies at different times, depending on the nature of the
monitorings that caused them. Recovery due to sychronous
monitorings are activated after the BPEL activity the pro-
cess is blocked at, but before the process resumes. On the
other hand, recovery due to asynchronous monitorings are
achieved as soon as possible, but always immediately before
a new BPEL activity is started. The other open issue is
what happens when two or more recovery strategies need
to be activated. If they are two synchronous approaches,
the designer knows about them and can define a rule that
the system itself can use to choose which one to execute,
for example depending on context information that is only
available at run time. This continues in the direction of our
previous work in the recovery of BPEL. processes [7]. Asyn-
chronous recoveries pose a slightly more complex problem.
In fact, the designer does not know when and which recov-
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eries will request activation at the same time. We solve this
problem by asking the designer to specify a priority for each
recovery strategy. The designer is also called to define how
the system should interpret these priorities. For example, if
the designer decides to use an exclusive strategy, only the
recovery with the highest priority level will be executed. If
the designer decides to go with an all strategy, all recoveries
are executed and the order is given by their priority values.
(Recovery strategies with the same priority level can execute
in any order.) If the designer decides to not provide prior-
ity levels, the recovery strategies are executed in any order.
Finally, we also allow the designer to specify a final location
for each recovery strategy. If the recovery strategy has not
been executed by then, it is canceled. As usual, we pro-
vide a flexible solution and the correctness of the recovery
executions is up to the designer.

Other directions however will be investigated. Our goal,
in fact, will be to provide a general means that can be
used across the framework, regardless of the monitoring ap-
proaches being used. However, in some cases re-synchro-
nization might not even be an issue. For example, should
the monitoring approach be particularly time-consuming, in-
stance recovery might be entirely out of the question. In this
case, the monitoring results could be used for process class
adaptation.

4. CONCLUSION
The continuous emergence of Service Oriented Architec-

tures, and in particular of Web services, has pushed re-
searchers’ attention towards techniques for guaranteeing qual-
ity of service at run time. In particular, much research has
concentrated on composite BPEL processes. Even though
many intelligent solutions have been proposed, we advocate
that no silver bullet has been found. This is why we present
our ongoing work on a unified framework for the monitoring
and recovery of such processes. Thanks to a clear separa-
tion of concerns between data collection and data analysis,
the framework is able to accomodate many different kinds of
monitoring approaches that can be added as plug-ins. There
is no need to choose one over another, but we can exploit
the benefits of multiple approaches. The framework also
presents a common management infrastructure, which can
be used to specify how the different approaches should be
coordinated depending on the process’ life-cycle and/or its
context of execution. Finally, the framework also provides
an extensible recovery infrastructure. We believe that the
overall framework is an important contribution, since it will
also prove beneficial in providing a concrete testbed for new
monitoring and recovery ideas.
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