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Abstract. Requirements elicitation is an important phase of the soft-
ware life-cycle, since it helps to reduce the software development time
and costs. Unfortunately, existing tools for software design are mainly
focused on building a “solution” (i.e., the software system), and neglect
the elicitation and analysis of the stakeholders’ requirements. Besides,
systems are constantly required to adapt to cope with the variability of
the environment in which they operate. For this reason, self-adaptation
must be also taken into account during requirements elicitation.This pa-
per proposes a graphical designer to express the conventional (functional
and non functional) requirements together with the adaptation capa-
bilities of the system. It has been developed as an Eclipse plug-in and
leverages other Eclipse projects, such as EMF [1], GMP [2] and Xtext [3],
which helped us to make the designer usable and extensible.

1 Introduction

Requirements elicitation is a delicate phase in the software development process.
If requirements are not captured completely and unambiguously, IT projects
would experiment delivery delays and overrun costs. For this reason, it is fun-
damental to provide requirements engineering (RE) tools to enable the software
designer to express and manage the requirements after their definition. Unfor-
tunately, existing tools are mainly focused on aiding the designers to build a
“solution” (i.e., the software system), and neglect a rigorous analysis of the re-
quirements of the stakeholders.

Besides, the RE process would not be effective enough if the designer just
takes into account the “conventional” functional and non functional require-
ments. As a matter of facts, many software systems need to self-adapt to cope
with the variability of the environment in which they operate. Variability may
be due to requirements violations, context changes, or modifications of the busi-
ness objectives of the stakeholders. For this reason, self-adaptation becomes a
requirement “per-se” and must be related to the other conventional requirements
of the system.

This paper proposes a graphical tool, the FLAGS Designer, to aid software
designers to elicit and represent the requirements of self-adaptive systems. Our
tool is based on the FLAGS (Fuzzy Live Adaptation Goals for Self-Adaptive



Systems) [4] modeling notation. FLAGS generalizes the existing KAOS [5] model,
adds adaptation goals to embed adaptation countermeasures, and fosters self-
adaptation by considering requirements as live, runtime entities. The adoption
of a goal model allows us to represent the requirements in a hierarchical way, by
refining high-level goals into system requirements and operations. Adaptation
goals embed the adaptation actions (i.e., changes in the model) to be performed
if one or more goals are not fulfilled satisfactorily. The execution of an adaptation
goal at runtime depends on the satisfaction level of related goals and the actual
conditions of the system and of the environment. Finally, to pursue the alignment
between requirements and the running systems, and delegate decisions about
adaptation to the goal model, FLAGS proposes to turn goals into live entities,
as suggested by Kramer and Magee [6].

Requirements modeling has been always tedious, since the size of the model
can grow easily, making it unmanageable. For this reason, FLAGS divides the re-
quirements model in different views (domain, goals, operations, and adaptation).
Each view may contain a portion of the model to make it more understandable
and reduce its complexity. FLAGS also proposes a suitable language that spec-
ifies goals as fuzzy constraints that quantify the degree x (x ∈ [0, 1]) to which
a goal is satisfied/violated. As for goals’ satisfaction, a crisp notion (yes or no)
would not provide the flexibility necessary in systems where some goals cannot be
clearly measured (soft goals), and small/transient violations must be tolerated.

The FLAGS Designer supports the creation of new instances of the FLAGS
model and provides some preliminary mechanisms to convert the elements of the
model into runtime entities. It provides a nice and intuitive graphical interface
that makes possible for non-practitioners to create and manage FLAGS models
with a minimal effort. Finally the FLAGS Designer offers suitable mechanisms to
represent requirements at runtime and assess their satisfaction. A first prototype
of the FLAGS Designer has been developed as an Eclipse plug-in1 and distributed
under GNU GPL 3 license. It leverages other Eclipse projects, such as EMF
(Eclipse Modeling Framework) [1], GMP (Graphical Modeling Project) [2] and
Xtext [3], which helped us to make the designer usable and extensible. The
first release of the FLAGS designer has been successfully employed to model
the requirements of real cases study in the health care domain. In particular it
has been used to model a set of safety-critical surgical actions (i.e., puncturing,
suturing, cutting) for the ISUR European Joint project [7].

The rest of the paper is structured as follows. Section 2 motivates our design
choices. Section 3 illustrates how the FLAGS Designer supports the creation
of new instances of the FLAGS model through a running example. Section 4
discusses some related work. Section 5 concludes the paper.

2 The Overall Solution

The FLAGS Designer has ben created to satisfy a certain set of requirements. It
must support the creation and management of new or existing instances of the

1 The graphical designer is publicly available at http://code.google.com/p/flags/.



FLAGS model, including their views. These model instances must comply with
a set of consistency rules (e.g., a goal cannot refine itself), while the definition
of goals must conform to the FLAGS language. Since golas are conceived as
runtime entities it is also necessary to trace them into live objects and assess
their satisfaction at runtime. Besides, we require that both domain experts and
non-practitioners be able to define new instances of the FLAGS model with the
minimal effort. Finally, requirements models and notations are in continuous
evolution, and, for this reason, the FLAGS Designer must be extensible.

The FLAGS Designer has been released as an Eclipse plug-in. A plug-in is
a module that may be used by other plug-ins, or be combined with other plug-
ins on the same Eclipse platform, or be extended by other plug-ins. This choice
supports the reusability and extensibility of the FLAGS Designer and allows us
to exploit other plug-ins (EMF, GMP, and Xtext) to reduce the release time of
our solution. We also decided to develop the FLAGS Designer according to the
MDA (Model Driven Architecture) principles to easily turn goals into runtime
entities. In particular, we defined the FLAGS model through EMF, which enables
the automatic translation of the model into correct and easily customizable Java
code. EMF also allows us to annotate the model with suitable OCL (Object
Constraint Language) [8] constraints to forbid the creation of instances of the
FLAGS model that violate its consistency rules.

GMP greatly helped us to develop a user-friendly graphical interface. GMP
provides a set of generative components and runtime infrastructures for devel-
oping graphical editors based on EMF. One can generate a graphical editor, by
simply creating a tooling, graphical and mapping model definition. The interface
of the FLAGS Designer is intuitive: the elements of the model can be created by
drag and dropping them from a palette, while links can be added by connecting
two elements in the model. Finally we used Xtext to define the syntax of the
FLAGS language. Xtext allows us to automatically derive a parser that recog-
nizes a FLAGS formula and generates its corresponding AST (Abstract Syntax
Tree). We modified the visit algorithm of the AST to derive the monitors that
check the satisfaction of the corresponding goal at runtime.

3 The FLAGS model

This section describes how the FLAGS Designer supports the creation of new
instances of the FLAGS model, including their different views (i.e., domain,
goals, operations and adaptations). The domain view represents the environment
in which the system operates. The goals view expresses the requirements of the
system and links them to the operations necessary for their achievement. The
operation view represents the operations of the system. The adaptation view
describes the adaptations that must be performed if some conditions are satisfied
(e.g., goals are violated, certain events takes place).

As presented in Figure 1, the graphical interface of the FLAGS Designer is
composed of three areas. The Diagram (1) shows one of the view the designer
is currently creating, the Palette (2) contains the elements (Nodes, Links, and



Compartments) that can be drag and dropped in the diagram, and the Properties
View (3) allows the designer to visualize and edit the properties of an element,
which has been selected in the diagram. Note that the elements of the model can
be divided in three categories: Node, Compartments and Links. Node are the
main elements of the FLAGS model, such as goals, adaptation goals, operations,
and so forth. Links represent all possible connections between the elements of
the model (e.g., an operationalization is a link between a goal and an operation).
The Compartments correspond to other additional properties of an element of
the model (e.g., the definition of a goal).

1
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3

Fig. 1. The Goal model for the puncturing case study.

In the following we describe how the FLAGS Designer supports the creation
of all different views of a model. As an example, we refer to the FLAGS model we
used to represent the puncturing in the percutaneous cryoablation. This surgical
action is used to destroy small cancers located on the surface of the kidney
and comprehends three phases. First, one or more needles must be inserted in
the tumoral mass, then an iceball must be created by injecting hydrogen in the
cancer through the needles, and, finally, all needles must be extracted after the
iceball is defrosted.

3.1 The Domain View

The elements of the domain may belong to one the following types: entity, event,
or agent. Both entities and events can be characterized by simple attributes (e.g.,



int, string) or may refer to other entities/events already defined in the model.
Attributes and references also have a cardinality (e.g., at most one, exactly one,
some, any). Entities are objects providing an informative content and may evolve
through a set of states, when one or more operations are performed. The state
of an entity is determined by the value assumed by its attributes. Events are
instantaneous objects, corresponding to something that may happen during the
execution of the system.

Agents can be software components, external devices and humans in the
environment, responsible for the satisfaction of some goals. Agents can monitor
and control entities and events in the environment and may be responsible for
the realization of a goal, depending on the objects they can monitor/control.

Fig. 2. A subset of the entities of the domain of the puncturing case study.

Figure 2 provides a subset of the domain model for the puncturing case
study. From Figure 2 we can see event Move Performed and entities Tumor,
Point and Voxel. In our example, we did not model agents since our main focus
is on automating a surgical action, instead of reasoning on the responsibility of
different agents.

Entities are characterized by three groups of compartments: the first one
identifies the states through which an entity can transit, the second one detects
the attributes, and the last one contains the references to other entities/events
in the model. Since events do not have a state, they are just characterized by
the last two groups of compartments.

Event Move Performed is generated every time a needle moves, either be-
cause it is being inserted or it is being extracted. It is described by a set of
attributes: the needle that has been moved (needle), the time at which the
movement took place, the direction of the movement (-1 if the needle is inserted
or 1 if the needle is extracted), the distance covered by the needle, and the stiff-



ness perceived during the movement. Event Move Performed has also reference
point which indicates the arrival point of the movement. Entity Point is just
characterized by its coordinates (x, y, and z ) and does not have a state. A Tu-
mor is characterized at most by a center (reference to a Point) and a surface
(i.e., a set of Voxel2). Entity Tumor may pass through state empty, when its
surface and center has not been detected yet, and defined, when its surface and
center is detected through an ultrasound scan.

3.2 The Goal view

The Goal view defines the main objectives the system should meet. Goals can
be refined into several conjoined subgoals (AND-refinement) or into alternative
combinations of subgoals (OR-refinement). The satisfaction of the parent goal
depends on the achievement of all (for AND-refinement) or at least one (for
OR-refinement) of its underlying subgoals. The refinement of a goal terminates
when it can be “operationalized”, or , in other words, it can be associated with
a set of operations. All goals that cannot be refined anymore are called leaf goals
and represent the requirements of the system. Goals are formally expressed in
terms of crisp or fuzzy properties and are associated with a priority depending
on their criticality.

Fig. 3. Decomposition of goal G1.2 for the puncturing case study.

2 A voxel is a volume element, representing a value on a regular grid in three dimen-
sional space



Fig. 4. The definition of goal G1.2.1.2

Figure 3 partially shows the goal view of the puncturing, where each goals
is characterized, on top, by its name and description. In particular, it shows
goal G1.2 (Execute puncturing) that can be decomposed (AND-refinement) into
3 sub-goals. First, all necessary needles must reach a specific position in the
tumoral mass (G1.2.1). When all needles have been inserted, the ablation cycle
must be performed (G1.2.2). After an iceball has been created, the doctor must
verify whether the tumor has been completely destroyed (G1.2.3). In its turn,
goal G1.2.1 can be further AND-decomposed into goals G1.2.1.1, G1.2.1.2 and
G1.2.1.3. G1.2.1.1 specifies that all the needles must be inserted in the tumoral
mass. G1.2.1.2 asserts that every time a movement is performed the needle must
not touch forbidden regions, such as ribs or nerves. G1.2.1.3 states that only one
needle can be active at each time instant.

Fig. 5. OCL constraints defined on the FLAGS model.



The Properties view allows the users to configure other additional attributes
of a selected goal, such as its description, priority, whether it is a leaf goal or
not, or its operations (in case of a leaf goal). For example, Figure 3 shows the
properties view of G1.2.1.1, which is a leaf goal (attribute leaf is true) and has the
maximum priority (i.e., 5) since it is one of the most important goals to achieve.
The operations associated with G1.2.1.1 are Insert, Signal Needle Extracted, and
Select Needle, which we will explain in detail in the following subsection.

Each leaf goal has one compartment composed of some sub-compartments.
The first sub-compartment contains the definition the goal, which is specified
in the FLAGS language and may use some variables that refer to other ele-
ments of the FLAGS model. For example, Figure 4 shows the definition of goal
G1.2.1.2, which asserts that every time a movement is performed (variable mp),
no forbidden region must be touched (variable fr) by that needle. The other
sub-compartments represent the mapping between the variables used in the def-
inition and the elements of the FLAGS model. For example, variables mp and
fr refer respectively to event Move Performed (as shown in Figure 4), and event
FR TouchedEv.

Figure 5 presents some OCL constraints specified for the FLAGS model. For
example, in the first group we assert that a leaf goal cannot be refined by other
goals (isLeaf ), while the second constraint asserts that a goal cannot refine itself
(i.e., it cannot be in both attributes myFather and target of a refinement link).

3.3 The Operation view

The Operation view describes the operations of the system. An operation is an
input-output relationship over a set of objects. Operations are specified depend-
ing on their effects on the domain: domain pre- and post-conditions (DomPre
and DomPost). A domain pre-condition characterizes the state before applying
the operation, a domain post-condition defines a relationship between the state
before and after applying the operation. Operations are also specified through
required pre-conditions (ReqPre), triggering pre-conditions (TrigPre) and re-
quired post-conditions (ReqPost). Required pre-conditions define those states in
which the operation is allowed to be applied. Triggering conditions define those
states in which the operation must be immediately applied, provided the domain
precondition is true. Required post-conditions define additional conditions the
application of an operation must satisfy.

Figure 6 represents some operations of the FLAGS model of the punctur-
ing: Select Needle Insert, Insert, and Signal Tumor Reached3. Operation Sig-
nal Tumor Reached is triggered every time a needle is moved (see TrigPre com-
partment), under the condition that the point in which the needle is positioned
equals the target point on the cancer (see DomPre compartment). This operation
generates event Tumor Reached that refers to the same needle that has been pre-
viously moved (see ReqPost). This operation causes a change of state for entity

3 For reasons of space we just enlarged the compartments of operation Sig-
nal Tumor Reached



Needle that transits from state inserting to state positioned (see DomPre and
DomPost compartments). This Properties View allows to configure other addi-
tional attributes of an operation, such as its input and output entities/events,,
a descriptions and a minimum and maximum time it can be executed.

Fig. 6. A subset of the operations of the puncturing case study.

Note that all pre- and post-conditions are represented through a suitable com-
partment. Each of these compartments is composed of one sub-compartment that
contains the definition of the pre- or post-condition (expressed in the FLAGS
language) and other sub-compartments that map each variable used in the def-
inition of the pre- or post-condition with an entity/event in the domain model.

3.4 The adaptation view

Adaptation goals define the adaptation capabilities embedded in the system
at requirements level. They are characterized by a condition and a trigger. A
condition specifies a set of properties of the system (e.g., satisfaction levels of
conventional goals, adaptation goals already performed) or of the environment
(e.g., constraint on the domain) that must be true to activate an adaptation



goal. A trigger is associated with one or more events that activate the execution
of the adaptation goal if the corresponding conditions are satisfied too.

Fig. 7. Adaptation goal FR Touched.

Adaptation goals are associated with a set of actions to be carried out
when adaptation is required. These actions can simply change the way goals are
achieved, by performing some goals/operations, without modifying the existing
FLAGS model, or, alternatively, they can modify the model, by, for example,
adding/removing goals and operations. Adaptation goals also have a priority to
select one among different adaptations that may be triggered at the same time.

Figure 7 shows adaptation goal FR Touched, which is performed to achieve
goal G1.2.1 even if a needle touches a forbidden region. In this case, the needle is
extracted and inserted again in a different position. The properties view allows
the users to configure a set of attributes of an adaptation goal, such as the goal
it helps (G1.2.1 in the example), its priority (i.e., 3) and the adaptation actions
to be performed. The trigger and conditions are represented through two com-
partments. The structure of each compartment is similar to that used to express
the pre- and post-conditions of the operations. Adaptation goal FR Touched is
triggered by events Move Performed and event FR TouchedEv. They indicate
that adaptation is performed after a needle is moved and a forbidden region has
been touched. The condition verifies that the event FR TouchedEv refers to the



same needle that performed the movement (fr.needle == fr.needle), and the
needle is being inserted (mp.direction = 1).

As shown in Figure 8, this adaptation goal is operationalized through two
adaptation actions: perform operation Extract And Reset and perform goal G1.2.1.
Operation Extract And Reset has been added only for adaptation purposes. It
extracts the needle that touched a forbidden region and changes its configuration
parameters. Action perform goal G1.2.1 re-performs the operations associated
with goal G1.2.1 (e.g., a needle can be selected again to be inserted) to enforce
its satisfaction.

Fig. 8. Adaptation action perform operation Extract AND Reset .

4 Related Work

In our previous work [9] we already compared the FLAGS model with other
approaches used to represent the requirements of self-adaptive systems. FLAGS
is one of the most expressive models that is able to represent almost all features
of a feedback loop. Differently from the other modeling approaches, FLAGS also
supports the evolution of the system by offering the possibility to change the
requirements model at runtime.

Other tools [10,11] have been already provided to model and manage the
requirements of the system. Objectiver [10] is a graphical designer to create and
manage the requirements expressed according to the KAOS methodology. Ob-
jectiver does not provide support to model the adaptation capabilities of the
system or transform goals into runtime objects. Instead, it focuses on the re-
quirements elicitation and can transform the KAOS model into textual require-
ments documents conforming to existing standards, such as the IEEE Software
Requirements Specification (IEEE 830-1998).

TAOM4E [11] relies on the TROPOS [12] methodology to translate early
requirements into the code of BDI (Belief-Desire-Intention) agents. The tool
has been released as an Eclipse plug-in by the Software Engineering group at
FBK IRST in Trento. Similarly to the FLAGS Designer, TAOM4E is a research



prototype that has been designed according to the MDA principles. Despite these
commonalities, the FLAGS Designer has a different objective, since it is aimed
to collect requirements to engineer the feedback loop.

5 Conclusions

This paper describes an eclipse plug-in to design and manage the requirements
of the system together with its adaptation capabilities. This is still a preliminary
solution towords the final objective of providing a complete transformation of
requirements into the code of the feedback loop and support the evolution of
requirements at runtime. The adoption of other existing Eclipse projects, such as
EMF, GMP, and Xtext, aided the development process and fostered the usability
and extensibility of the FLAGS Designer. The FLAGS Designer is still in its first
release and needs further improvements. The users must be guided during the
design of the requirements and must receive suggestions regarding the parts of
the model that still need to be defined. In this first release the correctness check
of the goals definition has not been integrated with the rest of the designer and
must be performed separately. In this phase we have just provided support for
the automatic generation of monitors [13] that assess the satisfaction of fuzzy
requirements at runtime. However to achieve the final objectives of engineering
the feedback loops, we also need to provide automatic mechanisms to convert
adaptation goals into adaptation actions that are activated at runtime, when
necessary.
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