
Adaptation Goals for Adaptive
Service-oriented Architectures∗

Luciano Baresi and Liliana Pasquale

Abstract Service-oriented architecture supports the definition and execution of
complex business processes in a flexible and loosely-coupled way. A service-based
application assembles the functionality provided by disparate, remote services in
a seamless way. Since the architectural style prescribes that all features be pro-
vided remotely, these applications adapt to changes and new business needs by se-
lecting new partner services to interact with. Despite the success of the architec-
tural style, a clear link between the actual applications —also referred to as service
compositions— and the requirements they are supposed to meet is still missing. The
embedded dynamism also imposes that requirements properly state how an appli-
cation can evolve and adapt at runtime. The solution proposed in this chapter aims
to solve these problems by extending classical goal models to provide an innovative
means to represent both conventional (functional and non-functional) requirements
and adaptation policies. To increase the support to dynamism, the proposal distin-
guishes between crisp goals, of which satisfiability is boolean, and fuzzy goals,
which can be satisfied at different degrees; adaptation goals are used to render adap-
tation policies. The information provided in the goal model is then used to automat-
ically devise the application’s architecture (i.e., the composition) and its adaptation
capabilities. The goal model becomes a live, runtime entity whose evolution helps
govern the actual adaptation of the application. All key elements are exemplified
through a service-based news provider.

Luciano Baresi and Liliana Pasquale
Politecnico di Milano, Dipartimento di Elettronica e Informazione, piazza L. da Vinci, 32 - 20133
Milano Italy, e-mail: {baresi|pasquale}@elet.polimi.it

∗ This research has been funded by the European Commission, Programmes: IDEAS-ERC,
Project 227977 SMScom, and FP7/2007- 2013, Projects 215483 S-Cube (Network of Excellence).

1

2 Luciano Baresi and Liliana Pasquale

1 Introduction

In these years, Service-oriented Architecture (SoA) has proven its ability to sup-
port modern, dynamic business processes. The architectural paradigm fosters the
provision of complex functionality by assembling disparate services, whose owner-
ship —and evolution— is often distributed. The composition, oftentimes rendered
in BPEL [18], does not provide a single integrated entity, but it only interacts with
services that are deployed on remote servers. This way of working fosters reusabil-
ity by gluing existing services, but it also allows one to handle new business needs
by adding, removing, or substituting the partner services to obtain (completely) dif-
ferent solutions.

So far, the research in this direction has been focused on proposing more and
more dynamic service compositions, neglecting the actual motivations behind them.
How to implement a service-based application has been much more important than
understanding what the solution has to provide and maybe how it is supposed to
evolve and adapt. A clear link between the actual architectures —also referred to
as service compositions— and the requirements they are supposed to meet is still
missing. This lack obfuscates the understanding of the actual technological infras-
tructure that must be deployed to allow the application to provide its functionality in
a robust and reliable way, but it also hampers the maintenance of these applications
and the alignment of their functionality with the actual business needs.

These considerations motivated the work presented in this chapter. We firmly be-
lieve that service-based applications must be conceived from clearly stated require-
ments, which in turn must be unambiguously linked to the services that implement
them. Adaptation must be conceived as a requirement in itself and must be prop-
erly supported through the whole lifecycle of the system. It must cope with both
the intrinsic unreliability of services and the changes imposed by new business per-
spectives. To this aim, we extend a classical goal model to provide an innovative
means to represent both conventional (functional and non-functional) requirements
and adaptation policies. The proposal distinguishes between crisp goals, the satis-
fiability of which is boolean, and fuzzy goals, which can be satisfied at different
degrees; adaptation goals are used to render adaptation policies.

The information provided in the goal model is then used to automatically devise
the application’s architecture (i.e., the composition) and its adaptation capabilities.
We assume the availability of a suitable infrastructure —based on a BPEL engine—
to execute service compositions [5]. Goals are translated into a set of abstract pro-
cesses (a-la BPEL [18]) able to achieve the objectives stated in the goal model; the
designer is in charge of selecting the actual composition that best fits stated require-
ments. Adaptation is supported by performing supervision activities that comprise
data collection, to gather execution data, analysis, to assess the application’s be-
havior, and reaction —if needed— to keep the application on track. This strict link
between architecture and requirements and the need for continuous adaptation led
us to consider the goal model a full-fledged runtime entity. Runtime data trigger
the countermeasures embedded in adaptation goals, and thus activate changes in the
goal model, and then in the applications themeselves.

Adaptation Goals for Adaptive Service-oriented Architectures 3

The rest of the chapter is structured as follows. Section 2 presents the goal model
to render the requirements of these systems. Section 3 describes how goals are trans-
lated into service-based applications, along with the rules that guide the supervision
at runtime. Section 4 illustrates some preliminary evaluation, Section 5 surveys re-
lated works and Section 6 concludes the chapter.

2 Goal Model

This section introduces the goal model adopted to represent requirements. Con-
ventional (functional and non-functional) requirements are expressed by adopting
KAOS [14], a well-known goal model, and RELAX [27], a relatively new notation
for expressing the requirements of adaptive systems. The goal model is also aug-
mented with a new kind of goals, adaptation goals, which specify how the model
can adapt to changes. The whole proposal is illustrated through the definition of a
fictious news provider called Z.com [8]. The provider wants to offer graphical news
to its customers with a reasonable response time, but it also wants to keep the cost
of the server pool aligned with its operating budget. Furthermore, in case of spikes
in requests it cannot serve adequately, the provider commutes to textual content to
supply its customers with basic information with acceptable delay.

2.1 KAOS

The main features provided by KAOS are goal refinement and formalization. Goal
refinement allows one to decompose a goal into several conjoined subgoals (AND-
refinement) or into alternative subgoals (OR-refinement). The satisfaction of the
parent goal depends on the achievement of all (for AND-refinement) or at least one
(for OR-refinement) of its underlying sub-goals. Goal decomposition can also be
accomplished through formal rules [14]. The refinement of a goal terminates when
it can be “operationalized”, that is, it can be decomposed into a set of operations.

Figure 1 shows the KAOS goal model of the news provider. The general objective
is to provide news to its customers (G1), which is AND-refined into the following
sub-goals: Find news (G1.1), Show news to requestors (G1.2), Provide high quality
service (G1.3), and Maintain low provisioning costs (G1.4) (in terms of the number
of servers used to provide the service). News can be provided both in textual and
graphical mode (see OR-refinement of goal G1.1 into G1.1.1 and G1.1.2). Textual
mode consumes less bandwidth and performs better in case of many requests. Cus-
tomer satisfaction is increased by providing news in a nice format and within short
response times (see AND-refinement of goal G1.3 into G1.3.1 and G1.3.2). G1.3.1
is a soft goal since there is not a clear-cut criterion to assess it, that is, whether news
are provided in a nice way.

4 Luciano Baresi and Liliana Pasquale

-0.5

-0.5

+0.7

OR AND

Find Text
Content

Collect
Requests

Find Graphical
Content All operations

G1.2
[Show news]

Provide
Content

G1
[Provide
news]

G1.1
[Find news]

G1.1.1
[Find text
content]

G1.1.2
[Find graphical

content]

G1.3
[Provide high

quality service]

G1.3.1
[Provide nice

view]

G1.4
[Maintain low

provisioning costs]

G1.3.2
[Guarantee low
response time]

p = 5

p = 3p = 2

A1

A3A2, A3 A1

AND

Fig. 1 The KAOS goal model of the news provider.

G1.1.1 r : NewsReq, nc : NewsCollection, ReceiveRequest(r) ∧
nc.keyword = “” ∧ nc.date = null ∧ (r.keyword 6= “” ∨ r.date 6= null) =⇒
♦t<x((∃ n ∈ nc.news : nc.keyword = r.keyword ∨ nc.date = r.date) ∧ n.text 6= null)

G1.1.2 r : NewsReq, nc : NewsCollection, ReceiveRequest(r) ∧
nc.keyword = “” ∧ nc.date = null ∧ (r.keyword 6= “” ∨ r.date 6= null) =⇒
♦t<x((∃ n ∈ nc.news : nc.keyword = r.keyword ∨ nc.date = r.date) ∧
n.text 6= null ∧ (∃ i ∈ n.images))

G1.2 nc : NewsCollection, n : News (∃ n ∈ nc.news) =⇒ ♦t<y ShowNews(nc)

G1.3.2 r : NewsReq, nc : NewsCollection, ReceiveRequest(r) ∧
nc.keyword = “” ∧ nc.date = null ∧ (r.keyword 6= “” ∨ r.date 6= null) =⇒
♦t<RTMAX (ShowNews(nc))

G1.4.1 servers : int, servers ≤ NMAX

Table 1 Definition of the example’s goals.

Goals are associated with a priority depending on their criticality. For example
goal G1.1.1 has lower priority (p = 2) than goal G1.1.2 (p = 3), since providing
news in graphical mode is more important than providing news in text mode. Goals
can contribute (either positively or negatively) to the satisfaction of other goals. This
is represented in the goal model through contribution links —dashed lines in Fig-
ure 1— and an indication of the contribution (x ∈ [−1,1]). For example, despite the
graphical mode is slower, it positively contributes to the customer satisfaction (con-
tribution link between goals G1.1.2 and G1.3.1). Short response times may require
the adoption of the text mode to provide the news (see the negative link between
goal G1.3.2 and goal G1.1.2) or may increase the provisioning costs since they may
require a higher number of servers in the pool (see the link between goal G1.3.2 and
G1.4).

Adaptation Goals for Adaptive Service-oriented Architectures 5

Name: Collect Requests
In/Out: r : ReceiveRequest, nc : NewsCollection
DomPre: nc.state = de f ault
DomPost: nc.state = req initialized
ReqPre: nc.keyword = “” ∧ nc.date = null ∧ (r.keyword 6= “” ∨ r.date 6= null)
TrigPre: ReceiveRequest(r)
ReqPost: nc.keyword = r.keyword ∧ nc.date = r.keyword ∧ Collect(nc.keyword,nc.date)

Name: Find Graphical Content
In/Out: nc : NewsCollection
DomPre: nc.state = req initialized
DomPost: nc.state = news received
ReqPre: nc.keyword = “” ∧ nc.date = null ∧ (r.keyword 6= “” ∨ r.date 6= null)
TrigPre: Collect(nc.keyword, nc.date)
ReqPost: ∀n ∈ nc.news : n.keyword = nc.keyword ∨ nc.date = n.date ∧

n.text 6= null ∧ (∃ i ∈ n.images : i.content 6= null) ∧ (∃ n ∈ nc.news)

Name: Provide Content
Input: nc : NewsCollection
ReqPre: (∃ n ∈ nc.news)
TrigPre: @(nc.state = news received)
ReqPost: ShowNews(nc)

Table 2 Definition of example’s operations.

Goals are formalized in Linear Temporal Logic2(LTL) [21] or First Order Logic
(FOL). The definition of the leaf goals of Figure 1 is reported in Table 1. For ex-
ample, goal G1.1.2 states that if the system receives a request for a given keyword
and date, it must provide related news within x time units. Provided news must be
about supplied keyword and date, and must come with images. Note that we cannot
provide a formal definition for goal G1.3.1, since it is soft. Instead, the satisfaction
of this goal can be inferred from its incoming contribution links, by performing an
arithmetic mean on the satisfaction of each contributing goal weighted by the value
given to each contribution link.

Operationalization [14] is the process that allows one to (semi-automatically) in-
fer the operations that “implement” goals, and thus in our work that partner services
must provide. An operation is defined through name, input and output values, and
pre- and post-conditions. Required preconditions (ReqPre) define when the oper-
ation can be executed. Triggering conditions (TrigPre) define how the operation is
activated. Required post-conditions (ReqPost) define additional conditions that must
be true after execution. Domain pre- (DomPre) and post-conditions (DomPost) de-
fine the effects of the operation on the domain. Table 2 shows the result of the opera-
tionalization applied to the case study (except for operation Find Text Content). For
example, operation Find Graphical Content moves the system from a state in which
a container for the news that have to be collected is initialized (DomPre) to a state

2 LTL provides the following operators: sometimes in the future (♦), sometimes in the past (�),
always in the future (�), always in the past (�), always in the future until (U), and always in the
past since (S), in the previous state (•), and in the next state (◦).

6 Luciano Baresi and Liliana Pasquale

in which a set of suitable news is available (DomPost). This operation is triggered
as soon as the collection of news matching provided keyword and date is started
(TrigPre). The effect of this operation is to collect a set of news that match the date
and keyword provided by the user (ReqPost). The definition of operation Find Text
Content is similar to operation Find Graphical Content except for the required post-
condition that is specified as follows:

ReqPost: ∀(n ∈ nc.news;n.keyword = nc.keyword∨nc.date = n.date∧
n.text 6= null∧ (∃(i ∈ n.images; i.content 6= null); true)∧∃(n ∈ nc.news; true))

The goal model also specifies a set of agents able to perform one or more opera-
tions. According to our point of view, agents represent the providers of the services
that will be used in the composition. For example, agent A1 is the user issuing the
requests and to whom news must be shown. Agent A3 can find news in both text
and graphical mode, while agent A2 can only find news in text mode.

2.2 Fuzzy goals

The definition of goals through LTL formulae allows one to assess whether a goal is
satisfied, but there is no way to say if it is only satisfied partially. For example, the
definition of goal G1.3.2 only allows one to assess whether the global response time
does not exceed the maximum threshold (RTMAX), but it provides no information
about the distance between the actual value and RTMAX . Furthermore the definition
of goal G1.4 only specifies whether the number of servers is lower than a certain
value NMAX , but it says nothing about the actual number of servers used in the pool.
These are only a couple of examples that made us introduce fuzzy goals, and express
their satisfaction level through real numbers between 0 and 1.

0 3 time (s)

1

7

(a)

servers0 5

1

(b)

Fig. 2 Membership functions for goals G1.3.2 (a) and G1.4 (b).

Fuzzy goals are rendered through the operators already introduced in RELAX [27]
to represent non-critical requirements: AS EARLY/LATE AS POSSIBLE φ , for tem-
poral quantities, AS CLOSE AS POSSIBLE TO q φ , to assess the proximity of quan-

Adaptation Goals for Adaptive Service-oriented Architectures 7

tities or frequencies (φ) to a certain value (q), AS MANY/FEW AS POSSIBLE φ , for
quantities (φ). This way goals G1.3.2 and G1.4 can be redefined in terms of these
operators as follows:

G1.3.2 : AS EARLY AS POSSIBLE t

G1.4 : AS FEW AS POSSIBLE servers

Goal G1.3.2 now says that the response time t must be as short as possible, while
goal G1.4 says that the number of servers must be as low as possible. The assessment
of goals G1.3.2 and G1.4 is guided by the membership functions shown in Figure 2
that assign a satisfaction value between 0 and 1, depending on the actual response
time (Figure 2(a)) and the number of used servers (Figure 2(b)), respectively. For
example, as for goal G1.3.2 if the response time is less than 3 s, the satisfaction is
1, if the response time is between 3 s and 7 s the satisfaction has a value between
0 and 1, and if the response time is greater than 7 s the satisfaction is 0. Note that
these functions are limited3 and, in general, have a triangular or trapezoidal shape.
The severity of membership functions can be measured in terms of the gradient of
the inclined sides. The severity can be tuned according to the priority assigned to a
goal (the higher the priority is, the steeper the membership function becomes).

2.3 Adaptation goals

Adaptation goals augment the KAOS model to describe and tune the adaptation ca-
pabilities associated with the system-to-be that are necessary to react to changes or
to the low satisfaction of conventional goals. An adaptation goal defines a sequence
of corrective actions to preserve the overall objective of the system. Each adaptation
goal is associated with a trigger and a set of conditions. The trigger states when the
adaptation goal must be activated. Conditions specify further necessary restrictions
that must be true to allow the corresponding adaptation actions to be executed. Con-
ditions may refer to properties of the system (e.g., satisfaction levels and priorities
of other goals, or adaptation goals already performed) or domain assumptions.

Each adaptation goal is operationalized through adaptation actions.

• Add, remove, or modify a conventional goal;
• Add, remove, or modify an adaptation goal;
• Add or remove an operation;
• Add or remove an entity;
• Perform an operation, moves the process execution to the activity in which the

operation, provided as parameter, starts to be performed (i.e., the first activity
in the process flow associated with that operation);

• Perform a goal, moves the process execution to the activity in which the goal,
provided as parameter, starts to be active (i.e., the first activity in the process
flow associated with the first operation of the goal);

3 Membership functions do not continue to be greater than 0 when the response time is infinite.

8 Luciano Baresi and Liliana Pasquale

• Substitute agent.

Adaptation actions can be applied globally, on all (next/running) process in-
stances, or locally (only on the application instance for which the triggers and con-
ditions of that adpation goal are satisfied). Adaptation goals may also conflict when
they are associated with conflicting goals (i.e., a couple of goals linked by a con-
tribution link with a negative weight). In this case, we trigger the adaptation goal
associated with the goal with the highest priority.

G1.1.2 G1.3.2

AG1 AG3

Change
Agent

Perform Op
Find Graphical Content

Perform Op
Find Text Content

Perform Op
Increment Servers

enforce

Substitute
Op Find Graphical

Content with
Find Text Content

enforce

Substitute
goal G1.1.2
with G1.1.1

enforce

AG2

modify

AG4

Fig. 3 Adaptive goals for the news provider.

The adaptation goals envisioned for our example are shown in Figure 3. Adapta-
tion goals AG1 and AG2 are triggered when goal G1.1.2 is violated (i.e., its satis-
faction is less than 1). AG1 is performed when the satisfaction of goal G1.1.2 is less
than 0.7 and comprises two basic actions: it changes the agent that performs oper-
ation Find Graphical Content with another one (e.g., A5) and executes the same
operation. These actions are applied locally, only for the instance of the goal model
(and indeed, the process instance) for which the triggers and conditions hold true.
The objective of this countermeasure is to enforce the satisfaction of goal G1.1.2.
Adaptation goal AG2 is applied when the satisfaction of goal G1.1.2 is less than
0.7 and AG1 has been already applied. AG2 performs operation Find Text Content,
and enforces a modified version of goal G1.1.2 (i.e., enforces goal G1.1.1 instead of
G1.1.2). AG2 is also applied locally. Adaptation goals AG3 and AG4 are triggered
when goal G1.3.2 is violated. In particular they are applied when the average value
of the end-to-end response time of the news provider is greater than 3 s (conditions).
AG3 enforces the satisfaction of goal G1.3.2 by switching to textual news (i.e., it
substitutes goal G1.1.2 with goal G1.1.1 and operation Find Graphical Content with
Find Text Content). AG3 is applied globally on all process instances. If AG3 is not
able to reach its objective, AG4 is applied. Instead, it tries to enforce the satisfaction
of goal G1.3.2, by incrementing the number of servers in the pool according to the
severity of violation (it performs operation Increment Servers). Operation Increment
Servers can only be performed by agent A4 and modifies the number of servers used
by the load balancer. AG4 is also applied on all process instances. Adaptation goals

Adaptation Goals for Adaptive Service-oriented Architectures 9

AG1 is in conflict with AG3 and AG4 since they try to enforce conflicting goals.
According to our policy, AG3 and AG4 are triggered first, since they are associated
with goal G1.3.2, which has higher priority (p = 5) than G1.1.2 (p = 3).

3 From Goals to Self-adaptive Compositions

This section illustrates our proposal to transform the goal model into running,
self-adaptive service-oriented compositions. The operationalization of conventional
goals is used to derive suitable compositions, while adaptation goals help deploy
probes needed to collect enough data for the runtime evaluation of goals’ satisfac-
tion. They are also in charge of adaptation actions.

3.1 Runtime infrastructure

The runtime infrastructure works at two different levels of abstractions: process and
goal level.

• The process level provides a BPEL engine to support the execution of the pro-
cess instances. It also performs data collection and adaptation activities. Data
collection activities gather the runtime data needed to update the state of enti-
ties, detect events, and evaluate the satisfaction of goals. Data to be collected
can be internal (they belong to the process state), or external (they belong to
the environment, and are retrieved by invoking external probes). Adaptation ac-
tivities apply the actions associated with adaptation goals. Different probes and
adaptation components can be easily plugged-in to obtain a complete execution
platform.

• The goal Level keeps a live goal model for each process instance, and updates
it by means of the data collected at process level. Every time an instance of the
goal model is updated, the infrastructure recomputes the satisfaction of conven-
tional goals. Specific analyzers can be plugged-in to when necessary, depending
on the kind of constraint (i.e., LTL, FOL, fuzzy) that must be evaluated to assess
a goal. The goal level also evaluates the triggers and conditions of the adapta-
tion goals and decides when adaptation must be performed. Adaptation actions
can affect both the goal model and the process instances. The interplay between
the goal and process levels is supported in the infrastructure by a bidirectional
mapping between the elements of the two levels.

Figure 4 shows the overall architecture of the runtime infrastructure. The BPEL
Engine is an instance of ActiveBPEL Community Edition Engine [1] augmented
with aspects [13] to collect internal data and start/stop the process’ execution when
necessary. The Data Collector coordinates the different probes, the Adaptation
Farm oversees the activities of recovery components. The Supervision Manager,

10 Luciano Baresi and Liliana Pasquale

Goal level

Process level

BPEL
Engine
BPEL

Engine
BPEL

Engine

Probes

Environment
Probes

An
al

ys
is

 F
ar

m

Adaptation Farm

Supervision
Manager

Mappings
Process - Goals

Goal
Reasoner

Live
Goals

Working
Memory
Goal

Model

Data Collector

Fig. 4 Runtime infrastructure.

based on JBoss rule engine [22], receives data from the process level, and triggers
the updates of the goal level. Also the Goal Reasoner is based on JBoss rule en-
gine [22]: for each running process instance it keeps a goal model in its working
memory and updates it. The Goal Reasoner asks the Analysis Farm, which co-
ordintates analyzers, to (re-)compute the (degree of) satisfaction of the different
leaf goals every time new data from the process level feed the goal model. The Goal
Reasoner evaluates the triggers and conditions associated with adaptation goals and
initiates their execution if needed. This means that the Goal Reasoner can modify
the goal model and propagate the effects of adaptation at the process level. These
effects are then applied onto the process instances by using the Recovery Farm,
through the Supervision Manager.

3.2 Service Compositions

Service compositions are rendered as BPEL processes. Their activities, events, and
partner services have a direct mapping onto the operations, entities, and agents of
the goal model. Our assumption is that all operations associated with the same goal
define a sequence and are not interleaved with the operations associated with other
goals. The definition of a complete process requires the composition of these se-
quences and the transformation of their operations into the “corresponding” BPEL
activities.

Each sequence is defined by encoding the operations associated with each goal
in Alloy to check whether there exists a possible sequence of operations whose ex-
ecution guarantees the satisfaction of the corresponding goal. Interested readers can
refer to [19] for a complete presentation. In general, a sequence s1 can uncondition-
ally precede s2 if the ending operation of s1, op1, and the starting operation of s2,

Adaptation Goals for Adaptive Service-oriented Architectures 11

op2 satisfy equation 1. While a sequence s1 conditionally precedes s2 if the ending
operation of s1 and the starting operation of s2, op2, satisfy equation 2.

(domPost(op1)→ domPre(op2))∧ (reqPost(op1)→ reqPost(op2)∧ trigPre(op2)) (1)

(domPost(op1)→ domPre(op2))∧ (trigPre(op1)→ (2)
trigPre(op2))∧ (reqPre(op2)→ reqPost(op1))

In this last case an if activity is inserted in the BPEL process between s1 and
s2, and its condition must correspond to the required precondition of op2.

For example, Figure 5(a) shows two possible sequences of operations. Since op-
eration Find Text Content and Find Graphical Content are mutually exclusive, we
select the first one to satisfy goal G1.1.2 (p = 3). This is because it is more critical
than goal G1.1.1 (p = 2), which is associated with operation Find Text Content.

The generation of BPEL activities is semi-automatic. When an operation, in the
goal domain, is translated into different sequences of BPEL activities, the user must
select the most appropriate. Rules for translating operations into BPEL activities are
the following:

1. If a required postcondition only contains an event, we generate one of the fol-
lowing activities: invoke, invoke-receive, or reply.

2. If the triggering precondition does not contain any event and the required post-
condition changes some entities, we generate an assign for each change.

3. If the triggering precondition contains an event, it is translated into a pick. If
the event refers to a temporal condition, it is translated into a pick on alarm.

4. If rule 1 and 2 are true at the same time, we generate an invoke-receive
followed by the set of assigns.

5. If rule 1 and 3 are verified at the same time, we generate an invoke, or a
pick, or an invoke-receive.

6. If rule 2 and 3 are verified at the same time, we generate either a pick or a
receive, and then a set of assigns.

The operations devised for the news provider are translated into the sequence
of activities shown in Figure 5(b). Operations Collect Requests and Find Graphi-
cal Content follow rules 2 and 3. Since event Collect appears in the definition of
both operations, invoke News Provider is generated only once. Operation
Provide Content, instead, follows rule 1. The same applies also for those operations
used in adaptation goals. For example, operation Increment Servers follows rule 1
and is simply translated into an invoke.

After identifying a proper sequence of BPEL activities, we must link entities and
agents to proper process variables and partner links. Each entity used in the opera-
tionalization of conventional goals is rendered as an internal variable of the process.
For example, our process has an internal variable called NewsCollection, which
corresponds to entity NewsCollection. We also create a partner link for each agent
and we assume that its endpoint reference is manually inserted by the user. In our
example, we need partner services S1, S2, S3, S5 that match agents A1, A2, and
A3, A5 respectively. Furthermore, we map agent A4 to another service S4 in charge
of modifying the number of adopted servers.

12 Luciano Baresi and Liliana Pasquale

Collect Requests

Find Graphical
Content

Find Text
Content

Provide Content

Increment
Servers

(a)

Receive Req
(date, keyword)

Assign
date --> nc.date

keyword --> nc.keyword

Invoke News Provider
(nc.date, nc.keyword)

Receive News
(news)

Assign News
(news --> nc.news)

Reply
(nc)

Collect Requests

Find
Graphical
Content

Provide Content

nc = NewsCollection

S1 --> customer (A1)
S2 --> news provider (A3)

(b)

Fig. 5 (a) Two possible sequences of operations and (b) An abstract BPEL process.

3.3 Adaptation

This interplay between the process and goal levels is supported by the mapping of
Table 3.

Conventional Goal
(leaf) XPath to the sequence in the BPEL process

Operation - XPath to the first activity associated with the operation
- XPath to the last activity associated with the operation

Agent Partner link

Entitiy Internal or external data

Event XPath to a corresponding process activity

Adaptation goal Recovery actions at process level

Table 3 Mapping goals to runtime data

Each conventional goal, which represents a functional requirement (i.e., it is op-
erationalized), is mapped onto the corresponding sequence activity in the BPEL
process (XPath expression). If the goal represents a non-functional requirement,

Adaptation Goals for Adaptive Service-oriented Architectures 13

but its nearest ancestor goal is operationalized, it is associated with the same
sequence of its parent goal. The XPath expression provides the scope for both
possible adaptation actions and for assessing the satisfaction of the goal (i.e., it de-
fines the activities that must be probed to collect relevant data). Each operation is
associated with the first and the last BPEL activities, associated with it through two
XPath expressions. Each agent is associated with a partner service; the actual bind-
ing is manually inserted by the user. All events are mapped to an xpath pointing to
the corresponding activity in the BPEL process. This activity must represent an in-
teraction of the process with its partner services (e.g., invoke, pick, receive).
Each adaptation goal is associated with a set of actions that must be performed at
process level.

Data collection specifies the variables that must be collected at runtime to update
the live instance of the goal model associated with the process instance. Data are
collected by a set of probes that mainly differ on how (push/pull mode), and when
(periodically/when certain events take place) data must be collected. If data are col-
lected in push mode, the Supervision Manager just receives them from the corre-
sponding probes, while if they are collected in pull mode, the Supervision Manager
must activate the collection (periodically or at specific execution points) through
dedicated rules.

To evaluate the degree of satisfaction of each goal, its formal definition must
be properly translated to be evaluated by the selected analyzer. The infrastructure
provides analyzers for FOL and LTL expressions, for crisp goals, and also provide
analyzers to evaluate the actual satisfaction level of fuzzy goals. To this end, we
built on our previous work and exploit the monitoring components provided by AL-
BERT [3], for LTL expressions, and Dynamo [4] for both FOL expressions and
fuzzy membership functions.

To enact adaptation goals at runtime, the Goal Reasoner evaluates a set of rules
on the live instances of the goal model available in its working memory. Each adap-
tation goal is associated with three kinds of JBoss rules. A triggering rule, activates
the evaluation of the trigger associated with the goal. A condition rule evaluates the
conditions linked to the goal. If the two previous rules provide positive feedback,
an activation rule is in charge of the actual execution of the adaptation actions.
performed when an adaptation goal can potentially fire (i.e., the corresponding Ac-
tivation fact is available in the working memory) and is selected by the rule engine to
be performed, among the other adaptation goals that can be performed as well. It ex-
ecutes the actions associated with that adaptation goal. For example, the triggering
rule associated with AG1 is the following:

when
Goal(id=="G1.1.2", satisfaction < 1, $pid: pID)
then
wm.insert(new Trigger("TrigAG1", pid));

It is activated when the satisfaction of goal G1.1.2 is less than 1. This rule inserts a
new Trigger fact in the working memory of the Goal Reasoner, indicating that the

14 Luciano Baresi and Liliana Pasquale

trigger associated with adaptation goal AG1 is satisfied for process instance pid.
The corresponding condition rule is:

when
$t: Trigger(name == "TrigAG1", $pid: pID)
Goal(id=="G1.1.2", satisfaction < 0.7, pID == pid)
$adGoal: AdaptationGoal(name=="AG1",

$maxNumAct: maxAct, numOfActivations < $maxNumNAct)
then
wm.remove($t);
wm.insert(new Activation("AG1", pid));

It is activated when the condition associated with AG1 (the satisfaction of goal
G1.1.2 is less than 0.7) is satisfied, the trigger of AG1 has taken place, and AG1 has
been tried less than a maximum number of times (maxNumAct). It inserts a new
fact in the working memory (Activation), to assert that the adaptation actions
associated with goal AG1, for the process instance and the goal model correspond-
ing to pid can be performed4. The action rule is:

salience 3
activation-group recovery
when
$a: Activation(name == "AG1", $pid: pID)
$ag: AdaptationGoal(name=="AG1", pID == pid)
then
List<Action> actions = new ArrayList<Action>();
actions.add(new SubstituteAgent("A3","A5"));
actions.add(new Perform("Find Graphical Content");
ag.numOfActivations++;
Adaptation adapt =

new Adaptation("AG1", actions,"instance", pid);
adapt.perform();
wm.remove(a);

Action rules have a priority (salience) equal to that of the goal they refer to
(G1.1.2, in this case) and are always associated with activation-group recovery.
This means that, once the rule with the highest priority fires, it automatically can-
cels the execution of the other adaptation goals that could be performed at the
same time. Adaptation actions are performed when the triggers and conditions of
the adaptation goal are satisfied (e.g., the corresponding activation object (a) is as-
serted in the working memory). The example rule performs the adaptation actions
(adapt.perform()) on process instance (pid). Finally, it removes the object
(a) that activated this adaptation.

4 Note that if an adaptation goal is applied globally, there is no need to identify the process instance
on which adaptation must be performed.

Adaptation Goals for Adaptive Service-oriented Architectures 15

Adaptation actions associated with AG1 have no consequences on the goal model
since they only require that the process re-execute the activities associated with op-
eration Find Graphical Content by using another agent. At the process level these
actions are applied locally and substitute partner service S1 with another one and
restore the execution to operation Find Graphical Content. This is achieved through
a Dynamo recovery directive that configures AOP probes to intercept the process
execution before activity invoke News Provider and invoke operation re-
bind(S3, S2.wsdl), that takes in input the name of the partner service to be sub-
stituted and the wsdl exposed by the new partner service to be adopted. After this
operation is performed, the execution can proceed. This is only feasible with state-
less services: in general, the application of an adaptation action cannot compromise
the internal state of the process and that of its partner services.

If we consider adaptation goal AG3, it is applied globally and substitutes goal
G1.1.2 and operation Find Graphical Content with goal G1.1.1 and operation Find
Text Content, respectively. To this aim, we deploy a new version of the process,
shown in Figure 3.3, for the next process instances. To apply AG3 on the running
process instances we intercept the process execution just before activity invoke
News Provider is performed. If a process instance has overtaken this execution
point, it cannot be migrated. At this point, we substitute the activities associated with
operation Find Graphical Content with the activities of the alternative execution
path, shown in Figure 3.3. Then, the process execution proceeds, performing the
activities of the alternative execution path.

Invoke Text News
(nc.date, nc.keyword)

Receive News
(news)

Collect Requests

Provide content

nc --> NewsCollection

p1 --> customer
p2' --> text news provider

Receive Req
(date, keyword)

Assign
date --> nc.date

keyword --> nc.keyword

Alternative Execution Path

Reply
(nc)

Assign News
(news --> nc.news)

Fig. 6 Adapted process for Z.com.

16 Luciano Baresi and Liliana Pasquale

4 Preliminary Validation

The validity of the proposed goal model has been evaluated by representing some
example applications commonly used by other approaches proposed to model self-
adaptive systems: an intelligent laundry [6], a book itinerary management sys-
tem [23], and a garbage cleaner [17]. These experiments said that our goal model
proved to be expressive enough to represent the main functionality of these systems
together with their adaptation scenarios.

In the first case study, a laundry system must distribute assignments to the avail-
able washing machines and activate their execution. The system must also guarantee
a set of fuzzy requirements stating that the energy consumed must not exceed a max-
imum allowed and the number of clothes that have to be washed must be low. These
requirements are fuzzy since their satisfaction depends on the number of clothes to
be washed and the amount of energy consumed, respectively. The satisfaction level
of the energy consumed allows us to tune the duration of the washing programs
accordingly. The adaptation goals devised for this case study also allow us to de-
tect transient failures (e.g. the washing machine turns off suddenly) and activate an
action that performs an operation to restart a washing cycle.

The itinerary booking system must help business travellers book their travels and
receive updated notifications about the travel status (e.g., delays, cancelled flights).
These notifications can be sent via email or SMS depending on the device the cus-
tomer is actually using (i.e., laptop or mobile phone). Since sending an SMS is the
most convenient option, we decided to adopt it in the base goal model of this case
study. Suitable adaptation goals allow us to detect, through a trigger (i.e., whether
the mobile phone is turned off) and a condition (i.e., whether the email of the cus-
tomer’s secretary is part of the information provided by the customer), when the
customer’s mobile phone is turned off, and apply an adaptation action that sends an
email to him/her.

In the cleaner agent scenario, each agent is equipped with a sensor to detect the
presence of dust and its driving direction. In case an agent finds a dirty cell, it must
clean it, putting the dust in its embedded dustbox. The adaptation goals envisioned
for this example allow the cleaner agent to recharge its battery when the load level
is low. Furthermore, they allow us to cover a set of failure prevention scenarios. For
example, adaptation goals can detect known symptoms of battery degeneration (e.g.,
suddenly reduced lifetime or voltage) and perform an operation to alert a technician,
or get a new battery. Adaptation goals can also detect the presence of obstacles in
the driving direction of an agent and activate two actions: stop the agent and change
the driving direction, when possible.

These exercises demonstrated to be very useful to highlight both the advantages
and disadvantages of our approach. We can perform accurate and precise adapta-
tions by assessing the satisfaction degree of soft goals and tuning the adaptation
parameters accordingly, as described before. The usage of triggers and conditions
makes it possible to react after system failures or context changes, and also model
preventive adaptations to avoid a failure when known symptoms take place.

Adaptation Goals for Adaptive Service-oriented Architectures 17

We adopt a priority based mechanism to solve conflicts among adaptations that
can be triggered at the same time. This mechanism is still too simplistic in certain
situations. For example a vicious cycle may exist when a countermeasure A has a
negative side effect on another goal, and that goal’s countermeasure B has a nega-
tive side effect on the first goal as well. These cases can be handled by tuning the
conditions of the countermeasures involved, which would become pretty complex.
For this reason, other decision making mechanisms should be adopted, like trade-
off optimization functions. Finally our goal model does not provide any reasoning
mechanism to automatically detect possible adaptations in advance, after changes
in the context and in the stakeholders’ requirements take place.

5 Related Work

Our proposal aims to provide a goal-based methodology to model the require-
ments of service compositions, that is, the architecture of service-based applications.
Cheng et al. [7] proposed a similar approach for self-adaptive systems in general.
The authors detect the reasons (threats) that may cause uncertainty in the satisfac-
tion of goals, and propose 3 strategies for their mitigation: add new functionality,
tolerate uncertainty, or switch to a new goal model that is supposed to repair the
violation. Instead our strategies do not constraint the ways a goal model can be
modified, but they can have different objectives and severity. These features allow
us to solve conflicts among strategies and provide ways to apply them at runtime.
Also Goldsby et al. [10] use goal models to represent the non-adaptive behavior
of the system (business logic), the adaptation strategies (to handle environmental
changes) and the mechanisms needed by the underlying infrastructure to perform
adaptation. These proposals only handle adaptation by enumerating all alternative
paths at design time. In contrast, we support the continuous evolution of the goal
model by keeping a live goal model for each process instance and by modifying it
at runtime.

Different works have already tried to link service compositions with the business
objectives they have to achieve. For example, Kazhamiakin et al. [12] adopt Tropos
to specify the objectives of the different actors involved in a choreography. Tropos
tasks are refined into message exchanges, suitable annotations are added to express
conditions on the creation and fulfillment of goals, and assume/guarantee conditions
are added to the tasks delegated to partner services. These elements enable the gen-
eration of annotated BPEL processes. These processes can only be verified statically
through model checking, ours also embed self-adaptation capabilities.

Another similar approach is the one proposed by Mahfouz et al. [15], which
models the goals of each actor and also the dependences among them. Actor de-
pendencies take place when a task performed by an actor depends on another task
performed by a different actor. Dependencies are then translated into message se-
quences exchanged between actors, and objectives into sets of local activities per-
formed in each actor’s domain. The authors also propose a methodology to modify

18 Luciano Baresi and Liliana Pasquale

a choreography according to changes in the business needs (dependencies between
actors and local objectives). Although this approach traces changes at requirements
level, it does not provide explicit policies to apply these changes at runtime.

The idea of monitoring requirements was originally proposed by Fickas et al. [9].
The authors adopt a manual approach to derive monitors able to verify requirements’
satisfaction at runtime. Wang et al. [26] use the generation of log data to infer the
denial of requirements and detect problematic components. Diagnosis is inferred
automatically after stating explicitly what requirements can fail. Robinson [24] dis-
tinguishes between the design-time model, where business goals and their possible
obstacles are defined, and the runtime model, where logical monitors are automat-
ically derived from the obstacles and are applied onto the running system. This
approach requires that diagnostic formulae be generated manually from obstacle
analysis.

Despite a lot of work focused on monitoring requirements, only few of them
provide reconciliation mechanisms when requirements are violated. Wang et al. [26]
generate system reconfigurations guided by OR-refinements of goals. They choose
the configuration that contributes most positively to the non-functional requirements
of the system and also has the lowest impact on the current configuration.

To ensure the continuous satisfaction of requirements, one needs to adapt the
specification of the system-to-be according to changes in the context. This idea was
originally proposed by Salifu et al. [25] and was extensively exploited in different
works [20] [2] that handled context variability through the explicit modeling of al-
ternatives. Penserini et al. [20] model the availability of execution plans to achieve
a goal (called ability), and the set of pre-conditions and context-conditions that can
trigger those plans (called opportunities). Dalpiaz et al. [2] explicitly detect the pa-
rameters coming from the external environment (context) that stimulate the need
for changing the system’s behavior. These changes are represented in terms of al-
ternative execution plans. Moreover the authors also provide precise mechanisms to
monitor the context. All these works are interesting since they address adaptation
at requirements level, but they mainly target context-aware applications and adap-
tation. They do not consider adaptations that may be required by the system itself
because some goals cannot be satisfied anymore, or new goals are added. We also
foresee a wider set of adaptation strategies and provide smarter mechanisms to solve
conflicts among different strategies.

Despite our solution is more tailored to service-based applications, many works
[11, 16] focus on multi agent systems (MAS). Morandini et al. [16], like us, start
from a goal model, Tropos4AS [17], which enriches TROPOS with soft goals, envi-
ronment entities, conditions relating entities and state transitions, and undesired er-
ror states. The goal model is adopted to implement the alternative system behaviors
that can be selected given some context conditions. Huhns et al. [11] exploit agents
to support software redundancy, in terms of different implementations, and provide
software adaptation. The advantage here is that agents can be added/removed dy-
namically; this way, the software system can be customized at runtime and become
more robust.

Adaptation Goals for Adaptive Service-oriented Architectures 19

The main advantage of these agent-based systems is their flexibility, since adap-
tation actions are applied at the level of each single component. On the other hand,
MAS provide no guarantees that agents cannot perform conflicting actions or that
the main system’s objectives are always achieved. Our approach, instead, is central-
ized and declare adaptation actions at the level of the whole system. Adaptation is
simply achieved by adding, removing, and substituting components, since the SOA
paradigm does not allow us to change the internal behavior of a component.

6 Conclusions

This chapter proposes an innovative approach to specify adaptive service-oriented
architectures/applications. The proposal extends the KAOS goal model and accom-
modates both conventional (functional and non-functional) requirements and the
requirements on how the system is supposed to adapt itself at runtime. Goals can
be crisp, when their satisfiability is boolean, fuzzy, when they can also be partially
satisfied, and related to adaptation, when they specify adaptation policies.

The proposal also explains how to map the “comprehensive” goal model onto
the underlying architecture. Conventional goals are used to identify the best service
composition that fits stated requirements. Adaptation goals are translated in data col-
lection directives and sequences of concrete adaptation actions. The first assessment
provided positive and interesting results.

We are already working on extending the tool support and on adopting our pro-
posal to model other self-adaptive service compositions.

References

1. Active Endpoints: The ActiveBPEL Engine. http://www.activevos.com/
community-open-source.php

2. Ali, R., Dalpiaz, F., Giorgini, P.: A Goal Modeling Framework for Self-Contextualizable Soft-
ware. In: Proceedings of the 14th International Conference on Exploring Modeling Methods
in Systems Analysis and Design, vol. 29, pp. 326–338 (2009)

3. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: Validation of Web Service Com-
positions. IET Softw. 1(6), 219–232 (2007)

4. Baresi, L., Guinea, S.: Self-supervising BPEL Processes. IEEE Transactions on Software
Engineering 99(PrePrints) (2010)

5. Baresi, L., Guinea, S., Pasquale, L.: Integrated and Composable Supervision of BPEL Pro-
cesses. In: Proc. of the 6th Int. Conf. of Service Oriented Computing, pp. 614–619 (2008)

6. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy Goals for Requirements-driven Adaptation. In:
Proceedings of the 18th International Requirements Engineering Conference, pp. 125–134.
IEEE Computer Society (2010)

7. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A Goal-Based Modeling Approach to
Develop Requirements of an Adaptive System with Environmental Uncertainty. In: Proceed-
ings of the 12th International Conference on Model Driven Engineering Languages and Sys-
tems, pp. 468–483 (2009)

20 Luciano Baresi and Liliana Pasquale

8. Cheng, S.W., Garlan, D., Schmerl, B.: Architecture-based Self-adaptation in the Presence of
Multiple Objectives. In: Proceedings of the 2nd International Workshop on Self-adaptation
and Self-managing Systems, pp. 2–8. ACM (2006)

9. Fickas, S., Feather, M.S.: Requirements Monitoring in Dynamic Environments. In: Proceed-
ings of the 2nd Inetrnational Symposium on Requirements Engineering, p. 140. IEEE Com-
puter Society (1995)

10. Goldsby, H.J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Hughes, D.: Goal-Based Modeling
of Dynamically Adaptive System Requirements. In: Proceedings of the 15th International
Conference on Engineering of Computer-Based Systems, pp. 36–45 (2008)

11. Huhns, M.N., Holderfield, V.T., Gutierrez, R.L.Z.: Robust Software Via Agent-Based Redun-
dancy. In: Proceedings of the 2nd International Joint Conference on Autonomous Agents &
Multiagent Systems, pp. 1018–1019. ACM (2003)

12. Kazhamiakin, R., Pistore, M., Roveri, M.: A Framework for Integrating Business Processes
and Business Requirements. In: Proceedings of the 8th International Con on Enterprise Dis-
tributed Object Computing, pp. 9–20. IEEE Computer Society (2004)

13. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J., Irwin, J.:
Aspect-Oriented Programming. In: Proceedings of the 11th European Conference on Object-
Oriented Programming, pp. 220–242. Springer (1997)

14. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to
Software Specifications. John Wiley (2009)

15. Mahfouz, A., Barroca, L., Laney, R.C., Nuseibeh, B.: Requirements-Driven Collaborative
Choreography Customization. In: Proceedings of the 7th International Joint Conference
ICSOC-ServiceWave, pp. 144–158 (2009)

16. Morandini, M., Penserini, L., Perini, A.: Modelling Self-Adaptivity: A Goal-Oriented Ap-
proach. In: Proceedings of the 2nd International Conference on Self-Adaptive and Self-
Organising Systems, pp. 469–470. IEEE Computer Society (2008)

17. Morandini, M., Penserini, L., Perini, A.: Towards Goal-Oriented Development of Self-
Adaptive Systems. In: Proceedings of the 3rd International Workshop on Software Engi-
neering for Adaptive and Self-Managing Systems, pp. 9–16. ACM (2008)

18. OASIS: Web Services Business Process Execution Language Version 2.0. http://docs.
oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (2007)

19. Pasquale, L.: A Goal-oriented Methodology for Self-supervised Service Compositions. Ph.D.
thesis, Politecnico di Milano (2011)

20. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: High Variability Design for Software
Agents: Extending Tropos. ACM Transanctions Autonomous Adaptive Systems 2(4), 75–102
(2007)

21. Pnueli, A.: The Temporal Logic of Programs. In: Proceedings of the 18th Annual Symposium
on Foundations of Computer Science, pp. 46–57. Weizmann Science Press of Israel (1977)

22. Proctor, M., et al.: Drools. http://www.jboss.org/drools/
23. Qureshi, N.A., Perini, A.: Engineering Adaptive Requirements. In: Proceedings of the 4th

International Workshop on Software Engineering for Adaptive and Self-Managing Systems,
pp. 126–131. ACM (2009)

24. Robinson, W.N.: Monitoring Web Service Requirements. In: Proc. of the 11th Int. Require-
ments Engineering Conference, pp. 65–74 (2003)

25. Salifu, M., Yu, Y., Nuseibeh, B.: Specifying Monitoring and Switching Problems in Context.
In: Proc. of the 15th Int. Requirements Engineering Conference, pp. 211–220. IEEE (2007)

26. Wang, Y. and Mylopoulos, J.: Self-repair Through Reconfiguration: A Requirements Engi-
neering Approach. In: Proceedings of the 24st International Conference on Automated Soft-
ware Engineering, pp. 257–268. IEEE Computer Society (2009)

27. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C.: RELAX: Incorporating Uncertainty into
the Specification of Self-Adaptive Systems. In: Proceedings of the 17th International Require-
ments Engineering Conference, pp. 79–88. IEEE Computer Society (2009)

