
REST-Based Management of Loosely Coupled Services
Heiko Ludwig, Jim Laredo,

Kamal Bhattacharya
IBM TJ Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532, USA

{hludwig,laredoj,kamalb}@us.ibm.com

Liliana Pasquale
Politecnico di Milano

Dipartimento di Elettronica e
Informazione
via Golgi, 40

20133, Milano Italy
pasquale@elet.polimi.it

Bruno Wassermann
University College London

Software Systems
Engineering Group

Dept. of Comp. Science
London, UK

b.wassermann@cs.ucl.ac.uk

ABSTRACT
Applications increasingly make use of the distributed platform that
the World Wide Web provides – be it as a Software-as-a-Service
such as salesforce.com, an application infrastructure such as
facebook.com, or a computing infrastructure such as a “cloud”. A
common characteristic of applications of this kind is that they are
deployed on infrastructure or make use of components that reside in
different management domains. Current service management
approaches and systems, however, often rely on a centrally
managed configuration management database (CMDB), which is
the basis for centrally orchestrated service management processes,
in particular change management and incident management. The
distribution of management responsibility of WWW based
applications requires a decentralized approach to service
management. This paper proposes an approach of decentralized
service management based on distributed configuration
management and service process co-ordination, making use
RESTful access to configuration information and ATOM-based
distribution of updates as a novel foundation for service
management processes.

Categories and Subject Descriptors
K.6 MANAGEMENT OF COMPUTING AND INFORMATION
SYSTEMS

General Terms
Management

Keywords
Loosely coupled systems, service management, REST, Discovery

1. INTRODUCTION
Today’s applications make use of the distributed platform that the
World Wide Web provides. In enterprises and other organizations
this leads to a distributed application infrastructure in which
different elements of this infrastructure are owned and managed by
different organizations. For example, this is the case in companies
that use a ready-made Software-as-a-Service (SaaS) such as
salesforce.com, owned by the service provider, that connects to in-
house applications of that company such as a general ledger
application, which is owned and operated by the company itself. In
another scenario, an organization uses computing infrastructure

from an outside provider as a “compute cloud” and operates its own
applications on an operating system image on a cloud provider’s
hypervisor. In another case the company builds an application on a
virtualization platform such as Google AppEngine [1] or Force.com
[2]. From a software stack perspective, the first scenario represents
a horizontal inter-domain relationship, the second and third
scenarios vertical ones. Both types of inter-domain relationships can
be present at the same time. These relationships can be either quite
static and tight-knit, as in the case of the SaaS integrated to the
company’s backend system, or very loose, such as a company using
a service in a mashup. The service provider may not even be aware
of the set of other organizations currently using this service.

This dependency on infrastructure outside an organization’s
management domain has to be taken into consideration for system
and service management. Current service management approaches
and systems, however, typically rely on a centrally managed
configuration management database (CMDB) to store information
on a service system’s configuration. It is the basis on which a
service management processes of a management domain run, e.g.,
change management, incident management and problem
management. The distribution of management responsibility of
Web-based applications requires a decentralized approach to service
management that takes into account the distribution of management
information and the execution of management processes across
organizational boundaries.

For example, an application accesses a storage service of
another company using a Web service interface. The properties of
the storage service including its interface specification is
configuration information - managed by the storage service
organization but relevant for the users of the service. If the company
offering the storage service changes the signature of an operation
accessing the Web service the service-using organization has to
change the application invoking the service correspondingly.
Changes are conducted in the course of change management
processes. If the storage service conducts its change process
independently of it users, their service will be disrupted when the
new release goes into effect until the using applications have been
adapted in an – independent – change process in each of the
service’s user organizations. Dealing with distributed configuration
information and integrating service management processes across
domains is essential to avoid service outages like the one illustrated
above.

Some current approaches address issues raised above. CMDB
federation enables accessing configuration information held in
different CMDBs [3]. However, CMDB federation requires the
explicit establishment of the federation relationship on the database
level and does not scale to a large service user base as common for
popular service providers due to high setup costs, even ignoring
incompatible CMDB products. In addition, federation requires
agreement from both parties involved. However, in a loosely

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

931

coupled environment such as mashups, the service provider may not
be tracking closely who is using its service. Today, service process
integration typically is implemented by email announcements being
sent to subscribers, e.g., for planned changes, and Web-based forms
or emails triggering service processes within a provider, e.g., for
reporting incident. This form of process integration requires human
intervention and is thus error prone, expensive and lags in time.

The objective of this paper is to outline the issues service
management poses in an environment of loosely coupled, Web-
based systems and to propose an approach of decentralized service
management based on distributed configuration management and
service process co-ordination. Our approach is based on RESTful
access to configuration information across domain boundaries,
RESTful representation of service process state information as a
basis for service process integration and ATOM-based distribution
of updates as a novel foundation for service management.

The rest of the paper is structured as follows: In the next
section we discuss in more detail the issues related to cross-domain
service management in loosely coupled distributed systems. Section
3 then outlines our general approach. Subsequently, we discuss the
Smart Configuration (SCI) approach to distributed configuration
management. In section 5 we describe the implementation of
change process integration based on SCI. In section 6 we discuss
related work and, finally, summarize and conclude in section 7.

2. SERVICE MANAGEMENT IN A
LOOSELY COUPLED ENVIRONMENT

Service management requires specific consideration in an
environment of loose coupling of applications and other resources
across boundaries of management domains.

In a single management domain, e.g. a single company, service
management today is mostly conducted along the lines of various
sources of best practices, e.g., the IT Infrastructure Library (ITIL)
[5]. Figure 1 illustrates the main concepts of this management
approach.

The service infrastructure used to produce a service is
complemented by a service management stack. The assets of the
service infrastructure, mainly hardware and licenses, are captured in
an Asset Database. The state of hardware and software entities in
the service infrastructure that can be configured are represented as
Configuration Items (CIs), each of which having a set of properties
describing its current settings. CIs can represent a router with its
routing table as a property, a Web application server with its access
control method, or a database instance having properties such as its
set of tables, etc. CIs can have relationships between each other,
typically expressing that one CI depends on another or an asset.
Assets and CIs are the information on which service management
processes are based. ITIL identifies a number of processes such as
incident management (tickets), problem management, change
management, release management, SLA management, asset
management and more.

Service processes can trigger each other, e.g., a problem
process can trigger a change process if fixing the problem requires a
configuration change. Asset and configuration information are
updated regularly in a discovery process that identifies new assets
and CIs and changes in its configuration by searching for and
analyzing systems on the network of a service infrastructure.

Figure 1: Single domain service management

CI and asset changes can also be triggered by service
management processes, mainly the change process, updating the
CMDB in the course of modifying the service infrastructure through
control operations, i.e. change of configuration. In a single
management domain, it is assumed that all assets and CIs relevant
for the service management processes can be found in the Asset DB
and CMDB and these CIs can be discovered by accessing the
service infrastructure.

This assumption typically does not hold in a loosely coupled
environment. The service infrastructure of one management domain
accesses services in another management domain or is accessed by
another. This entails CIs of one management domain depending on
CIs of another. The following figure illustrates some scenarios.

Figure 2: Distributed configuration example.

In figure 2 the rounded boxes represent the assets and CIs
(circles) in different management domains – we disregard the actual
service infrastructure in the remainder of the discussion. The bold
circles represent CIs on which other management domains depend
or may depend, e.g., a Cloud service provided by a compute service
provider. It might have properties such as the type of hypervisor, the
end point where to access the service, its IP address etc. In the
scenario above we have two infrastructure service providers, one for
storage and one for compute services. The service of the storage
service provider is used by an enterprise, which has assets and CIs
on its own but accesses an external storage service, e.g., for backup.
A startup company may not have any assets of its own in its service
infrastructure but uses services provided by others, e.g., the

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

932

compute services of an external provider and the services of an
enterprise, which may be a credit card processor.

A number of issues arise in such a context for a management
domain:
• It is difficult to discover assets and CIs outside one’s own

management domains due to the lack of scope and lack of
access to the resources of another domain.

• It is difficult to keep track of which management domains are
using and currently depending on a specific CI of one’s
management domain.

• Service management processes are typically confined to one
management domain, primarily due to lack of knowledge of
external CIs in use or external domains using CIs and the lack
of authority to control CIs and their corresponding resources in
other management domains.

• In addition, service management process implementations vary
and point-to-point process integration is cumbersome, in
particular in the case of loose coupling with frequently
changing dependencies between CIs of different management
domains.
Single domain service management cannot address these

issues and a novel approach is required.

3. Overview of the Approach
The service management approach that we are proposing – termed
(Service Management) SM 2.0 – rests on a number of principles:

Distributed Configuration Management: All configuration
items are discovered locally on a resource and expose a RESTful
interface to management processes. We call these configuration
items Smart Configuration Items (SCIs). SCIs can be exposed
locally or also to other domains. An SCI can depend on any other
SCI, in its domain or another. This dependency can be either
derived in the course of a local discovery process or established
manually.

Distributed Service Management: All management processes
access configuration information using SCIs as the common
abstraction, be they local or remote. Management Processes also
expose a RESTful interface that allows other to participate in a
process to the extent appropriate, e.g., allowing other domains to
follow a change process or enabling other domains to trigger new
incident processes related to an SCI they use.

Updates: Changes of state of SCIs or processes are being
distributed using ATOM feeds [6]. Service management processes
can listen to feeds according to their interests. Feeds can originate
from local or remote SCIs but also from processes. Different
listeners can read updates and take corresponding action pertaining
to their service management processes.

Domain-Aware Service Process: Service Processes need to be
aware of potential coordination with processes in different domains,
responding to updates on remote processes or SCIs. This can either
be achieved by implementing new service processes or wrapping
existing implementations.

Figure 3 illustrates the SM 2.0 approach. It shows 2 domains A
and B interacting. Each domain performs local discovery of its
service infrastructure and makes configuration information
available as SCIs through a RESTful interface. One SCI of the right
domain can be accessed by other domains and the left domain
maintains a dependency to it. Also, the service processes of the right
domain are exposed as resources. Feeds are generated for changes
to the state of SCIs and processes of domain B and read by listeners
in domain A. These listeners can then trigger responses in service
management processes. This may include participating in a process
of domain B. For example, a new change process may be initiated
pertaining to an SCI on which domain A depends. A feed listener

for change processes identifies it as relevant and triggers a new
internal change process, resulting in the participation of domain A
in domain B’s change process. In another case, a listener of domain
A could respond to a configuration change of an SCI read in a feed
by creating a new internal incident process.

Figure 3: Overview of SM2.0

The basic tenet of the SM 2.0 approach is to use Web-based

approaches where it we need to deal with cross-domain
management issues due to the high level of standardization of Web-
based interaction, the simplicity and flexibility of the REST-based
approach and the wide availability of tooling to implement SCIs,
create feeds and consume feeds and RESTfully provided
information.

In the following sections we will discuss in more detail the
distributed configuration management approach based on the SCI
concept and distributed change management as a service process of
particular relevance to service management in loosely coupled
environments. This will provide a reference example for other
service management processes.

4. DISTRIBUTED CONFIGURATION
MANAGEMENT
The SCI distributed configuration management approach is based
on discovering configuration items locally on resources and
publishing the state of resources on a Web server on the resource or
a Domain Configuration Server, which hosts SCI state on behalf of
each resource of a domain or a part of it. Unlike traditional
approaches to discovery, which mainly center around a domain-
wide discovery server, in our approach each resource is configured
to perform discovery locally by a discovery agent and driven by its
specific needs in terms of times and frequency of scans.

In addition to state information being made available as Web
resources, feeds are being created to inform about changes in
configuration. Feed can be consumed by feed readers. Aggregators
can combine and re-interpret feeds to provide to stakeholders of
SCIs specific information about the configuration of the distributed
platform according to their needs, e.g., an aggregated view of
configuration changes in all domains a service infrastructure uses.

In the following subsections we will explain the architecture
for configuration management and the model used to represent the
configuration items and their changes.

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

933

4.1 Configuration Management Architecture
Overview
Figure 4 outlines the configuration management architecture of a
specific domain. Our architecture comprises two distinct sets of
components:

(1) the SCI framework for configuration discovery and
publishing configuration information and

(2) a feed manager for consuming and aggregating feeds.
The focus of this section is the SCI framework while we

discuss the feed manager in section 4.3.

Figure 4. Configuration Management Architecture

A local discovery agent installed on each resource of the
environment periodically performs configuration discovery. After
local discovery, the agent generates a set of SCI files, each
corresponding to a configuration item discovered on the resource.
Each SCI is associated to a feed document describing its changes
over time.

The generated SCIs and feeds documents are published to the
Domain Configuration Manager, which is a web server authoritative
for a specific domain. We may also have other scenarios in which
every resource publishes its own configuration information, forming
its own domain.

 The Domain Configuration Manager offers RESTful services
to retrieve, create, modify or delete discovered SCIs. It also
provides a graphical interface system administrators can use to view
all SCIs in a domain, find a local SCI, explore SCI dependencies
recursively, add a new SCI or modify existing SCIs. It also enables
domain administrators to add a new SCI or modify existing SCIs to
represent configuration information that is not discovered
automatically, e.g., a business process that is implemented based on
applications running on resources.

Each Domain Configuration Manager keeps an internal
registry to take trace of the available SCIs. Each SCI is associated to
a unique id, a set of attributes (address, port, type, etc.) able to
unambiguously identify it and two paths in the local file system
pointing respectively to the location of the SCI document and the
feed document containing configuration changes. Each SCI can be
unambiguously identified through its URL that is constructed as
follows:

http://<webServerAddress>:8080/sci?id=<id>

where <webServerAddress> is the address of the Domain
Configuration Manager and <id> is the identifier of the requested
SCI.

When a new SCI is created the Domain Configuration
Manager adds a new entry in its internal table with a unique id
associated to the new SCI, the discovered attributes and the paths to
the locations of the configuration information. A new empty feed
document is also created and associated to that SCI. If an
configuration item is deleted in the service infrastructure the
discovery agent performs a delete request to the Domain
Configuration Manager, which marks the row state in its internal
table as “deleted”. Configuration files will be deleted after a certain
time for space reasons. If an SCI is modified, the discovery agent
posts a new entry in the feed document associated to that item. The
possible changes are: add/delete/modify property, add/delete
dependency, or add/delete a SCI pointer into a dependency.

During the discovery phase the URLs of the SCIs each
configuration item depends on must be identified. These SCIs can
be local or they can belong to different domains. When the
dependency is local, the SCI id can be retrieved from to the local
Domain Configuration Manager giving in input the attributes
discovered about that SCI. The Domain Configuration Manager will
search in its table the rows that have attributes matching those given
in input and it will return the associated ID. If the dependency is not
local it is also necessary to resolve the address of the Domain
Configuration Manager authoritative for the required SCI. The
Configuration WS Resolver (see Figure 4) keeps trace of the
addresses of the associated Domain Configuration Managers.
Typically, we will expect that many cross-domain dependencies
will be entered manually.

4.2 SCI State and Feed Representation
The state of an SCI is represented as an XML document that

can be retrieved at the URL of the SCI using an HTTP GET request,
as outlined above.
 The SCI schema is extensible to address the descriptive
requirements of different configuration information domains. On
the top level, each SCI has three parts:

• a set of attributes,
• a list of properties and
• a list of dependencies.
Each SCI is described by a set of predefined attributes: URI, it

is mandatory and represents the URL that univocally identify the
SCI; type, it is mandatory and represents the component type
(DBMS, application server, database, etc.); domain, it is not
mandatory and it represents the domain name of the machine on
which the SCI resides; description, it is not mandatory and gives a
human readable description of the SCI. Each user can add new
attributes of any type, if necessary.

An SCI can have any number of properties. Each property is
defined by a name and an XML value. The property name is equal
to the local name of the XML tag enclosing the property value. This
mechanism allows users to define their own properties that can have
values compliant to an arbitrary schema. Finally, an SCI has zero or
more dependencies. Each dependency is specified by a type and a
list of URLs identifying SCIs on which the item depends. Extension
points are provided to insert new attributes and elements describing
the nature of the dependency.

In the following example we show an SCI document for a
DBMS. This SCI has three properties: host-name, service-port,
instance-name. Our SCI has one dependency, of type HostedBy that
refers to the physical machine in which the DBMS is currently
hosted.

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

934

<sci:SmartConfigurationItem xmlns:sci="com.ibm.watson.tlaloc.sci"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="com.ibm.watson.tlaloc.sci"
 xmlns:prop="com.ibm.watson.tlaloc.sciProperties"
 xmlns:dep="com.ibm.watson.tlaloc.sciDependency"
 type="dbms"
 uri=http://169.254.212.59:8080/sci?id=1
 domain="V25was136.mkm.can.ibm.com">
<Properties>
 <Property name="host-name">
 <prop:host-name>V25was136.mkm.can.ibm.com</prop:host-name>
 </Property>
 <Property name="service-port">
 <prop:service-port>5060</prop:service-port>
 </Property>
 <Property name="instance-name">
 <prop:instance-name>DB2Node-Instance7</prop:instance-name>
 </Property>
</Properties>
<Dependencies>
 <Dependency type="HostedBy">
 <OtherSci_id>http://169.254.212.59:8080/sci?id=2</OtherSci_id>
 </Dependency> </Dependencies>
</sci:SmartConfigurationItem>

The SCI document format is kept extensible to accommodate
configuration information on any kind of items, hardware, software,
and higher level, business items. This extensibility enables the reuse
of other configuration information representation models and
formats such as the DMTF Common Information Model (CIM)
XML representation, which provides descriptive elements for a vast
set of hardware and software configurations [22].

Besides the representation of the current SCI in the Domain
Configuration Manager, the discovery process produces a feed
outlining the changes to the SCI state since the previous discovery.
If an SCI is modified, the discovery agent posts a new entry in the
feed document associated to that item. The possible changes
occurring are: add/delete/modify property, add/delete dependency,
or add/delete a SCI pointer into a dependency. The description of
the change is represented in the change entry content. Each change
is enclosed by the element <change>. It is described by the
following attributes: type that represents the kind of change
happened, xpath that points to the modified property/dependency,
feed-uri that is the feed url and sci-uri that is the SCI url. Element
<change> has two sub-elements: <old> that contains the previous
value of the property/dependency and <new> that contains the new,
current value of the property or dependency. If the change is an
addition or a deletion of a property or a dependency the element
<old> or ≈ <new>, respectively, will be not inserted in the change
description.

<entry>
 <title>fifth entry</title>
 <id>http://example.com/property/1236</id>
 <updated>2004-12-14T18:30:02Z</updated>
 <author>
 <name>Liliana Pasquale</name>
 <email>lpasqua@us.ibm.com</email>
 <uri>http://example.com/~lpasqua</uri>
 </author>
 <content type="*/xml">
 <!-- the property value is modified -->
 <change type="ChangePropertyValue"
 xpath="/SmartConfigurationItem/Properties/Property
 [@name='server-type']"
 feed-uri=”http://169.254.212.59:8080/feed?id=1”
 sci-uri=”http://169.254.212.59:8080/sci?id=1” >
 <pc:old>
 <sci:Property name="server-type">

 <prop:server-type>WAS v5.0</prop:server-type>
 </sci:Property>
 </pc:old>
 <pc:new>
 <sci:Property name="server-type">
 <prop:server-type>WAS v5.1</prop:server-type>
 </sci:Property>
 </pc:new>
 </change>
 </content>
</entry>

In the example above we show an entry describing the change of the
value of the property “server-type” (the change type is
ChangePropertyValue). The property value changed from WAS v5.0
to WAS v5.1.

4.3 Feed Management and Aggregation
The objective of feed management is the creation of mashups that
enable interested stakeholders to gain views that transcend the
perspective of a particular domain. To this end, the information
exposed by each Domain Configuration Manager is aggregated by
the Feed Manager. Configuration information can be manipulated
by the Feed Manager in different ways: merge all SCIs and feeds of
all resources of the distributed platform, show configurations or
changes for a particular type of item, or show configuration and
changes relative to a specific SCI and its dependencies. The
platform offers users to customize the aggregation logic using
standard ATOM tools such as Yahoo Pipes [21], selecting the XML
sources - configuration information or other sources online, and
adding the relevant logic. For example, the feed documents
describing changes can be aggregated with other sources such as the
Google Charts API [22] to show the statistical distribution of
changes.

The implementation of the Feed Aggregation user interface
provides two kinds of information:

(1) SCIs configuration and
(2) SCIs changes.

Figure 5: User interface for SCI configuration info

Figure 5 shows the user interface provided by the Feed
Manager to offer information about SCI configuration. In the blue
toolbar on top, the user can select the preferred visualization type:
all SCIs available in the environment, all SCIs a business
application relies on, all SCIs of the same type or a specific SCI.
After the user selects the visualization mode, in the left side is
reported a list of the requested SCIs. When the user selects one of
them, the SCI document is shown in the right side. While the tabs in
the bottom show the dependencies and the properties of the selected

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

935

SCI. The SCI document is visualized as a tree, as shown in Figure 5
or as XML. The SCI pointers in the dependencies are links that
permit to navigate dependencies to other SCIs in any domain.

Figure 6: User interface for SCI Change info

Information about SCI changes is provided through
subscriptions to Atom feeds provided by Domain Configuration
Managers.

In Figure 6 we show the user interface provided by a custom
feed reader. The blue toolbar allow users to filter visualized changes
depending on the business application the configuration items rely
on or the SCI type (e.g. only databases, or applications). If the user
selects the filter mode we can see in the left pane a list of the last
changes happened in the environment. When the user selects one of
them, the change is shown in the right pane, highlighting the
differences between the old SCI and the new SCI. In the bottom a
history of the changes of the selected SCI is displayed.

To aggregate feeds coming from the whole distributed
platform, the Feed Manager keeps an index of all the SCIs in an
internal table: each SCI is detected through its ID, a set of attributes
and the address of the Domain Configuration Manager containing
its local configuration (SCI and feed documents). The Feed
Manager applies filters to attributes to select feeds that need to be
aggregated. For example, if a user wants to see changes that
happened in all DBMS the Feed Manager will aggregate only those
feeds of type DBMS. The Feed Manager also provides suitable
interfaces to register and un-register an SCI when a new entry is
created or deleted in the authoritative Domain Configuration
Manager.

5. CROSS-DOMAIN CHANGE
MANAGEMENT

Change management is an important aspect of IT service
management. It enables the stakeholders of a system to deal with
changes in a controlled manner and thus maintain consistency and
remain operational. The ability to manage change is a fundamental
requirement for loosely-coupled applications that are comprised of
services drawn from service providers in multiple management
domains. Service providers need to ensure that they can carry out
necessary changes to the systems that host their service offering
without breaking their clients' operations. And service consumers
need an opportunity to try and adapt to changes in the services they
use.

As outlined in section 4, applications built over the Web,
present us with a number of challenges when it comes to managing
change. Due to loose coupling and the potentially large number of

applications and clients, it is impractical for a service provider to
maintain up-to-date information on all clients that can be affected
by a particular change. This raises the question of how to identify all
clients of a service provider across administrative domains that may
be impacted by a particular change without resorting to
broadcasting the change proposal to everyone. Furthermore, a
change process must respect the autonomy of the various
management domains and accept that change management
implementations vary across domains. Nevertheless, there need to
be mechanisms that allow service providers and their clients to
cooperate in the implementation of changes to SCIs in their
domains.

How then can we enable change management in such
environments? Our solution is based on a number of simple
concepts whose implementation exploits standard Web 2.0
technologies. Figure 7 presents an overview of the components
comprising the Change 2.0 architecture. Many of these components
make use of the functionality described in the previous section.

Figure 7: Change 2.0 Architecture Overview

In the following subsections we discuss the concepts behind
our solution and show how these concepts have been realized in a
working system.

5.1 Inversion of Responsibility
As mentioned above, without a centralized CMDB the burden of
knowing which clients to inform about a particular change proposal
lies with the service provider. Apart from the potentially large
number of clients, a service provider may not know when a client
will need to use one of its services. Furthermore, consider the case
in which a modification is to a low-level configuration item, such as
a DBMS. How should the link to its dependent configuration items
be established? Given the impracticality of relying on a centralized
CMDB, it is difficult to ensure that all relevant clients are contacted.
Service providers shouldn’t have to maintain detailed lists of which
clients to contact for every possible change. Similarly, we want to
avoid simply broadcasting change proposals to everyone. What is
required is a mechanism that scales well and that can work with the
reality of a loosely coupled application environment.

We overcome this issue through the inversion of
responsibilities among the participants in a change. Given that
service providers cannot identify the set of identified stakeholders,
clients will have to know which SCIs to watch. In section 4 we have
described how clients can discover the configuration items they
depend on across domains. Given knowledge of their dependencies,
clients are able to subscribe to changes on the SCIs relevant to their

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

936

operation. Service providers are then responsible to publish
notifications about planned changes to the SCIs under their control.
These notifications describe changes in sufficient detail for
subscribers to carry out an impact analysis and are made available
via ATOM feeds. This simple idea is the first necessary step to
enable change management in service mashups.

In our architecture, there are three components that are
primarily responsible for implementing inversion of responsibility.
First, we have the Domain Service Manager (DSM), which is a
central domain service and acts as the entry point to change
management functionality. The DSM hosts a set of RSS feeds
describing the latest changes to SCIs in its domain. The Change
client is, in its current incarnation, a web-based UI that runs on an
end user's machine. The Change client allows users to access a list
of SCIs (e.g., all SCIs that belong to this application or all SCIs that
represent databases under my control) through the Feed Manager
and describe the planned changes to these SCIs. A description of the
change is then submitted to the DSM and published in its feeds. The
counterpart of the Change Client is the so-called Subscription client.
Via its UI users can view the SCIs under their control and ask the
Subscription client to subscribe to the change feeds of its
dependencies at the DSM. Knowledge of these dependencies is the
result of our local discovery as described in section 4. The
Subscription client then displays new changes of the dependencies
similar to a RSS reader and can also notify its users via email or
SMS. Users can then view the details of any new changes, carry out
an impact analysis and decide, again via functionality provided by
the Subscription client, whether or not to join in the change process.
By exploiting our dependency models and relying on change feeds
via ATOM we remove the burden on service providers of
identifying whom to notify of a planned change while furthermore
avoiding the need to broadcast change notifications
indiscriminately.

5.2 Change Coordination
The next question is how to implement the actual change

process among a service provider and the set of clients affected by a
particular change. We cannot impose the same process on everyone
across administrative domains and organizations. We need to enable
cooperation while not violating the autonomy of the various parties
involved in a change process. Therefore, a global change process is
not suitable for change management on the cloud. Instead change in
such application environments needs to work like a decentralized
coordination protocol. Change coordination is based on a common
state model. Our state model provides for coordination at various
stages of the change process and represents the least common
denominator of necessary synchronization points. This leaves
participants the freedom to implement the various phases of the
change process at their end as they see fit.

Our state model is encapsulated in the Change Coordinator
(CC) component. The CC runs the state model for each change,
collects votes and status updates from participants and notifies them
about transitions in the change process. Interaction with the CC is
via its REST interface, which allows participants to register, submit
votes, enquire about the current status of the change process, and so
on. The Change Owner (CO) component and the Change
Participant (CP) component represent the initiator of a change and a
client affected by this change. The CO and CP implement the local
part of the change process and coordinate with each other via the
CC. The owner and participant have a great degree of flexibility in
how they implement the CO and CP components.

Figure 8 presents an overview of our state model. Its states
loosely follow the ITIL service management process [9]. During

authorization participants vote whether they agree for the change to
proceed. Once the CO (Change Owner) commences with the
implementation, the common state reflects this and prompts all
participants to carry out the necessary changes at their end. The CO
and all participants then synchronize on the completion of the
implementation phase in order to allow for testing the change. The
result of verification can either be to undo the change or have it
committed by the CO and all participants.

Figure 8. The common change coordination state model.
CO and CP need to be able to follow the various states of the

protocol, carry out some local action and respond accordingly. For
this the CC must be able to update them of the change process status
via RESTful calls and receive votes as well as status updates (e.g.,
implementation complete, change released) from them in the same
manner. However, beyond these obvious requirements to be able to
follow the change protocol, there is no prescription of how the local
actions should be carried out. That is, as long as participants can
synchronize with the CC when required, internally they can still
employ an existing manual process or some automated system. In
this way we can achieve coordination while maintaining the largest
possible degree of freedom on how to implement the local part of a
change process.

5.3 Modes of Collaboration
Not all clients are created equal and our change process needs

to take account of this. Given the cross-domain and even cross-
organizational nature of change processes, we must ensure that a
provider is not prevented from committing a change merely because
one of the participants finds itself unable to authorize it. However,
there are clients whose continued operation it is important to
guarantee. A service provider will not want to go ahead with a
change, if such a client reports problems during the verification of a
change. The question is how a service provider can maintain control
over its resources, while at the same time cooperating with those
affected by its changes. We address this issue by defining different
modes of collaboration that a change participant can be granted by
the change owner. These collaboration modes provide for various
levels of influence a participant has on the outcome of the change
process. The collaboration modes we have developed so far are as
follows.
• Informative: The change participant is notified of progress

made as the change process runs (i.e. authorized,
implementing), but has no influence over the change process

Authorizing

Implementing Rejected

Verifying

Releasing

Change
Released

Reverting

Unchanged

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

937

and does not supply any feedback. This represents the most
basic form of support given to someone affected by a change.
A participant is enabled to follow the change process and adapt
to it, but no further cooperation can take place.

• Consultative: As for informative, however, a consultative
participant is asked to provide feedback about the change
process, such as whether it could have verified the change or
how long it took to implement the necessary changes at its end.
This differs from the informative mode in that it enables a
service provider to collect information about how its clients
cope with its changes. It can be useful to aggregate such
information over time.

• Co-Authorizing: As above, but in this case the change
participant can influence the change process through its
authorization vote. The Change Coordinator will ask the owner
and all other participants to abort the change, if a co-
authorizing participant votes to reject in the authorization
phase.

• Co-Verifying: As above, but in addition the change
participant's vote during the verification phase is taken into
account. If a co-verifying change participant indicates that it
couldn't verify a change (i.e. adaptation to the change at its end
wasn't successful), then the Change Coordinator will ask the
owner and all other participants to revert the changes. A vote
to reject a change can contain additional information
explaining the reasons behind this decision.

The Change Coordinator can be configured to grant a

particular collaboration mode to certain groups of clients. In
addition, Change owners can be notified of the collaboration mode a
particular participant requests during registration in a change and
decide whether or not to grant it. During the change process, the
Change Coordinator will react to incoming messages from
participants according to the collaboration mode granted to them.
The various modes are not mutually exclusive within a change
process.

The concept of collaboration modes affords a service provider
control over its resources while at the same time reflecting the
various degrees of influence a provider may want to grant to certain
clients from different domains. Furthermore, collaboration modes
define a framework for cooperation in a change process ranging
from simply providing information about the progress, over
collecting feedback and finally to having the ability to abort the
change process, if these changes would break the service of an
affected client.

Change management is an important activity in loosely-
coupled applications that consist of compositions of services
available through a marketplace of service providers. In this section
we have identified the key issues that complicate change
management in complex, cross-domain application environments,
such as Web 2.0 and cloud computing. We have shown how these
issues can be addressed through a few simple concepts, which have
been implemented using standard Web 2.0 technologies, such as
ATOM feeds and RESTful interfaces. This should simplify the
integration of Change 2.0 into a wide array of systems. Having
overcome the most pressing technical issues in enabling change
management for these environments, it will be interesting to
investigate which additional challenges will become apparent from
applying our architecture/solution on some real world cases.

6. IMPLEMENTATION
The SM 2.0 Framework for distributed, cross-domain management
was implemented based on WebSphere Smash, a development and
runtime environment for RESTful services, mash-ups and AJAX-
type Web applications [8].

As explained above, the distributed configuration management
is comprised by several components: the local configuration
discovery agent, the Domain Configuration Manager and the Feed
Manager. The configuration discovery performed by the local agent
is based on Galapagos [7]. Galapagos is a model-driven approach
combining models of software components with a distributed
crawling (graph traversal) algorithm to discover end-to-end, multi-
tier dependencies between application and data in a distributed
system. The local agent uses the results produced by the discovery
performed by Galapagos to generate the SCIs XML representations.
The Domain Configuration Manager and the Feed Manager are
implemented as WebSphere Smash applications. Both expose
REST interfaces as described for the consumption of SCIs and feeds
and the definition of new SCIs. The graphical user interfaces
provided by the local Domain Configuration Managers and the Feed
Manager are based on Dojo [9], an open-source JavaScript toolkit
for building Ajax web applications.

As a representative of cross-domain service integration, the
Change 2.0 approach was likewise implemented using WebSphere
Smash, building on the distributed configuration framework. All
components are Smash applications, Change Coordinator as well as
the Change Owner and Change Participant components and their
user interfaces.

7. RELATED WORK
Several efforts in the area of distributed systems management using
services have been described and standardized. The approach of
exposing a resource’s properties to describe its details is proposed in
standards such as Web Services Distributed Management (WDSM)
[11][12], and Web Services for Management (WS-Management)
[13]. To define the actual components, WS-Management endorses
the use of WS-CIM [7], and WSDM requires key tags to specify
attributes about each property. Both standards allow for extensions
to embed custom definitions. Each standard proposes a different set
of service interfaces to access these definitions. WSDM
recommends the use of the Web Services Resource Framework
(WSRF) [10], and WS-Management recommends WS-Target [17].
WSRF originated as part of the Open Grid Services Architecture
[20], which identified the need for special treatment of management
in a cross-domain environment [14].

In contrast, SCIs have a very simple and extensible schema to
describe properties and expose them using a RESTful interface. To
manage events WSDM uses WS-BaseNotification [18] and WS-
Management uses WS-Eventing [19]. Both standard offer a
publish/subscribe mechanism to send and receive events. These
protocols are not as widely spread and pose a greater obstacle to
adoption than the proposed ATOM/RSS feed approach of the SM
2.0 framework.

Dependencies are key within the SCI approach and the
management processes which are based on it. We need to be able to
trace SCIs on which we depend and receive notification when they
are about to change. In WSDM, the concept of Relationships is
presented to express any type of relation, including dependencies.
We claim that dependencies are all we need to maintain and we can
do the majority locally. It is worth noting that WS-M does not cover
the aspect of maintaining relationships or dependencies. Also,
within the Grid world, dependencies are not paramount, locating

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

938

services is more important, yet via a peer to peer approach all
resources can be identified and indexed.

Fundamental to a SCI is its local awareness, it allows
identifying its dependencies and at the same time detecting changes
and notifying them via feeds. We proposed a mechanism that
provides discovery capabilities from the genesis of a host, jointly
with a comparison mechanism that is able to detect when
components are provisioned, modified or destroyed. In WS-
Management, an identification service, namely Identify, allows to
discover any component that supports such interface, in WSDM,
relationships may be used to traverse and find other components,
yet there is no prescribed method to first establish those
relationships.

While there is initial work on CMDB federation whitepaper
[3], it is not applicable to a dynamically changing environment as it
is found in today's SaaS and Cloud usage patterns.

Significant work has been conducted on cross-domain process
integration in general [23] and dynamic integration in particular
[24]. However, many approaches rely on detailed, message-oriented
integration of bilateral parties, in pre-designed processes such as
expressed with WS-BPEL [25], or rely on contracts to specify the
details of a relationship between interaction partners. None of these
approaches applies to the large scale and dynamic environment of
the SM 2.0 framework.

8. SUMMARY AND CONCLUSION
In this paper we discussed issues and challenges posed to service
management by distributed, Web-based applications spread over
multi organizations and proposed the SM 2.0 approach to overcome
these issues.

Environments that make use of Cloud infrastructure or
platform services, the integration of SaaS in an organization’s
service infrastructure, as well as the use of Web services in mashups
lead to distributed ownership of resources and corresponding
distributed service management responsibility. Current service
management approaches are primarily based on the availability of a
central CMDB as a repository of configuration information on
which all service management processes are based. Moreover,
service management processes are aimed at being conducted in a
centralized way and do not address interaction with other
organizations’ service management processes. However, this is not
viable in the case of cross-domain integration of service
infrastructure.

The proposed SM 2.0 approach addresses these issues based
on a distributed approach to configuration management and cross-
domain process integration. Configuration items are discovered
locally and exposed using a RESTful interface as SCIs, which
provide an abstraction of local and remote configuration
information for management processes. Also, service management
processes expose a restful interface that enables other domains to
participate. We detailed the approach to process integration using
the change management process as example. The SCI framework,
the feed aggregator and the change coordinator have been
implemented on the basis of WebSphere Smash.

While some prior work addresses issues of CMDB federation
or distribution of management interfaces on resources, there is no
approach, to our knowledge, that addresses the issue of loose
coupling and its ensuing dynamics and the integration of
management services exposed as a RESTful entity.

The SM 2.0 approach is aimed at a cross-organizational
scenario. However, it is also applicable to large enterprises that have
different domains of responsibility between the IT organizations
and the lines of business.

In our next steps, we will work on implementing other
management processes on the basis of the SM 2.0 approach and
devising novel ways of aggregating feeds from different SCIs and
processes for advanced analytics of service management behavior.
In addition, we will continue to evaluate SM 2.0 against existing
centralized approaches, ease of integration by consumers of the
information produced by SM 2.0, cost and frequency of
aggregations and quality of the data that is available.

9. Acknowledgements
The research leading to these results is partially supported by the
European Community’s Seventh Framework Programme
(FP7/2001-2013) under grant agreement n◦ 215605.

10. REFERENCES
[1] Google AppEngine. http://code.google.com/appengine
[2] Force Platform. http://salesforce.com/platform

[3] D. Clark et al.: The Federated CMDB Vision: A Joint White
Paper from BMC, CA, Fujitsu, HP, IBM, and Microsoft,
Version 1.0. 2007. (http://www.cmdbf.org/CMDB-Federation-
white-paper-vision-v1.0.pdf)

[4] R. Fielding: Architectural Styles and the Design of Network-
based Software Architectures. Dissertation, University of
California, Irvine. 2000.

[5] Service Transition, Information Technology Infrastructure
Library, (May 2007).

[6] The Atom Syndication Format.
http://www.ietf.org/rfc/rfc4287.txt

[7] K. Magoutis, M. Devarakonda, N. Joukov, N. Vogl:
Galapagos: Model-driven discovery of end-to-end application-
storage relationship in distributed systems. IBM Journal of
Research and Development, June 6, 2008.

[8] ProjectZero. http://www.projectzero.org/
[9] Dojo. http://dojotoolkit.org/

[10] Web Services Resource Framework (WSRF) Primer v1.2.
OASIS Committee Draft 02 - 23 May 2006.

[11] Web Services Distributed Management: Management of Web
Services (WSDM-MOWS) 1.1 OASIS Standard, 01 August
2006

[12] Web Services Distributed Management: Management Using
Web Services (WSDM- MUWS 1.1) Part 1, 2 OASIS
Standard, 01 August 2006

[13] Web Services for Management (WS-Management)
Specification Document Number: DSP0226 DMTF 2008-02-
12 Version: 1.0.0

[14] A. Iamnitchi and I. Foster: On Fully Decentralized Resource
Discovery in Grid Environments. International Workshop on
Grid Computing, Denver, CO, November 2001.

[15] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman:
Grid Information Services for Distributed Resource Sharing, In
Proceedings 10th IEEE International Symposium on High-
Performance Distributed Computing (HPDC-10), August
2001.

[16] Web Services Common Information Model (WS-CIM)
DMTF.

[17] Web Services Transfer (WS-Transfer) W3C Member
Submission 27, September 2006.

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

939

[18] Web Services Base Notification 1.3 (WS-BaseNotification)
OASIS Standard, 1 October 2006.

[19] Web Services Eventing (WS-Eventing) W3C Member
Submission 15, March 2006.

[20] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A.
Grimshaw, B. Horn, F. Maciel, F. Siebenlist, R. Subramaniam,
J. Treadwell, J. Von Reich. The Open Grid Services
Architecture, Version 1.0. Informational Document, Global
Grid Forum (GGF), January 29, 2005.

[21] Yahoo pipes. http://pipes.yahoo.com/pipes/

[22] Distributed Management Task Force: Specification for the
Representation of CIM in XML. Version 2.2, January 9, 2007.

[23] C. Bussler. B2B Integration: Concepts and Architecture.
Springer-Verlag, 2003.

[24] P. Grefen, K. Aberer, H. Ludwig, and Y. Hoffner. Cross-
organizational workflow management for service outsourcing
in dynamic virtual enterprises. IEEE Data Engineering
Bulleting, (24)1, 2002.

[25] OASIS. Web Services Business Process Execution Language
Version 2.0, 2007.

WWW 2009 MADRID! Track: Web Engineering / Session: Web Architecture Aspect

940

