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Abstract—Stealthy attacks on Industrial Control Systems can cause significant damage while evading detection. In this paper, instead
of focusing on the detection of stealthy attacks, we aim to provide early warnings to operators, in order to avoid physical damage and
preserve in advance data that may serve as an evidence during an investigation. We propose a framework to provide grounds for
suspicion, i.e. preliminary indicators reflecting the likelihood of success of a stealthy attack. We propose two grounds for suspicion
based on the behaviour of the physical process: (i) feasibility of a stealthy attack, and (ii) proximity to unsafe operating regions. We
propose a metric to measure grounds for suspicion in real-time and provide soundness principles to ensure that such a metric is
consistent with the grounds for suspicion. We apply our framework to Linear Time-Invariant (LTI) systems and formulate the suspicion
metric computation as a real-time reachability problem. We validate our framework on a case study involving the benchmark
Tennessee-Eastman process. We show through numerical simulation that we can provide early warnings well before a potential
stealthy attack can cause damage, while incurring minimal load on the network. Finally, we apply our framework on a use case to
illustrate its usefulness in supporting early evidence collection.

Index Terms—cyber-physical systems, industrial control systems, early warning systems, security, process control, reachability
analysis
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1 INTRODUCTION

C YBER-PHYSICAL SYSTEMS (CPS) augment physical sys-
tems with enhanced capabilities, such as real-time

monitoring and dynamic control [1]. Industrial Control Sys-
tems (ICS) are considered a subclass of CPS, where software
controls safety-critical industrial processes. Attacks against
ICS can have disruptive consequences to users and physical
assets, as shown by the German steel mill attack in 2014 [2]
and the attack against the Ukrainian power grid in 2015 [3]
— among others.

Anomaly-based Intrusion Detection Systems (IDS) can
usually detect attacks affecting the physical process in an
ICS, by monitoring deviations from the normal system
behaviour (anomalies) [4]. However, skilled attackers can
take advantage of the noise in the system and the thresholds
used by the anomaly detectors, to cause damage to the ICS
before an alarm is raised [5], [6]. Such attacks which evade
detection are also known as stealthy attacks. Early Warning
Systems (EWS) [7], [8] traditionally monitor the occurrence
of suspicious and seemingly benign network events (often
called weak evidence). Differently from IDS, EWS generate
predictions and advice on unfamiliar situations before a
potential attack can cause harm [8]. EWS may not reveal
attacks on their own, but can guide the selection of appro-

• M. Azzam (mazen.azzam@ul.ie) and B. Nuseibeh (bashar.nuseibeh@ul.ie
are with Lero, the Irish Software Research Centre, University of Limerick,
Limerick, Ireland.

• L. Pasquale (liliana.pasquale@ucd.ie is with Lero, University College
Dublin, Dublin, Ireland.

• G. Provan (g.provan@cs.ucc.ie) is with Lero, University College Cork,
Cork, Ireland.

priate measures to detect potential intrusions, and as such
complement existing IDS as a security solution [9]. In this
paper, instead of forcing the detection of stealthy attacks, we
aim to raise early warnings when there is sufficient evidence
that a potential stealthy attack can cause damage.

Our main contribution is a framework to generate
early warnings in ICS based on preliminary indicators
of a stealthy attack, referred to as grounds for suspicion.
This framework can be used within a larger EWS which
considers indicators from other sources. The success of a
stealthy attack depends on the laws of physics underlying
the behaviour of the ICS and the anomaly detector. Thus,
we define two grounds for suspicion based on the physical
state of the system: (i) Feasibility of a stealthy attack indicates
whether the ICS can be taken to an unsafe operating region,
while avoiding detection by the IDS. (ii) Proximity represents
the vicinity of the system to the unsafe operating region. To
monitor the grounds for suspicion, we propose a suspicion
metric based on a mathematical model of the system and a
notion of reachability. We also provide soundness principles
to ensure that a metric is consistent with the measured
grounds for suspicion.

To assess feasibility of our framework, we study its
applicability to Linear Time-Invariant (LTI) systems, a stan-
dard physical modelling framework commonly used in
process control. We adapt existing reachability analysis
tools [10] to compute the suspicion metric. We alleviate
the computational cost of performing real-time reachability
analysis by computing symbolic reachable sets of system
states offline [11]. We then instantiate these sets online given
a prediction of the physical state variables for a certain
number of time steps into the future. We leverage ellipsoidal
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techniques [12], [13], [14] to perform efficient safety checks
online and compute the suspicion metric. In a previous
work [15], we focused on performing safety checking for LTI
systems under stealthy attacks in real-time. In the present
work, we extend these results into an algorithm that effi-
ciently computes the suspicion metric online. We also design
suitable thresholds for warnings of different criticality and
show how our algorithm satisfies the soundness principles
of our framework.

We validate our framework’s application to LTI systems
using a testbed involving a networked version of the bench-
mark Tennessee-Eastman Process (TEP). We use numerical
simulations to showcase that our framework can generate
early warnings before a stealthy attack can cause damage.
Although we perform this study using a particular type
of stealthy attack — false data injection on sensors — our
framework is generalizable to other types of stealthy attacks.
Furthermore, we demonstrate that our framework scales
well with the number of safety constraints and incurs mini-
mal load on the network. Finally, we apply our framework
on a use case inspired by the TEP benchmark, to show-
case its usefulness in supporting early evidence collection,
especially from low-level control devices. However, these
benefits come with a cost associated with the human effort
required to instantiate the framework.

The rest of the paper is organised as follows. Section 2
provides a brief overview of related work. Section 3 illus-
trates a motivating example, while Section 4 describes the
main contribution of the paper, which is the framework
for physics-based early warnings. We begin our case study
in Section 5 where we introduce the TE benchmark. In
Section 6 we explain how we instantiated our framework
to the benchmark. Section 7 presents our evaluation results,
and Section 8 concludes the paper.

2 RELATED WORK

In this section, we provide some background on existing
attack detection techniques in ICS. We also clarify the posi-
tioning of the paper with respect to existing work on early
warning systems and attack impact assessment in CPS/ICS.

2.1 Attack Detection in ICS

Several network-based intrusion detection systems for CPS,
and particularly for ICS, have been suggested in previous
work. Some of them [16], [17] are knowledge-based and look
for features in the network traffic that are consistent with a
known threat model. Others [18], [19] are anomaly-based
and look for features that suggest a deviation from the ex-
pected behaviour. Furthermore, physics-based methods [4]
consider the effect of attacks on the controlled physical
process, and look for deviations from expected physical
sensor measurements, given by a mathematical model of
the system.

However, with enough knowledge about the system, an
offender can launch stealthy attacks. These attacks are usu-
ally performed by introducing fake sensor measurements
or actuation signals in the control loop. In this way, the
anomaly detector will not be able to detect a deviation
of the system from the normal behaviour. Stealthiness of

such attacks can be ensured by mimicking the noise na-
tive to the system [5] or exploiting some control-theoretic
properties [6], [20] (e.g., zero dynamics). “Active” detection
methods have been proposed to detect stealthy attacks.
These methods involve the introduction of a probing signal
(watermark) to reveal fake sensor measurement or actuation
signals [21], [22]. Active methods can also be designed
for attacks exploiting specific control-theoretic properties.
In this case, detection relies on modifying the system by,
for example, including additional sensor measurements [20]
or modulating actuation signals [23]. These modifications
can remove the control-theoretic properties exploited by the
attack.

However, active attack detection techniques may bring
trade-offs that can jeopardise their effectiveness. In the
case of physical watermarking, the trade-off between the
watermark’s robustness and the control performance may
not be acceptable, especially in safety-critical systems. Also,
modifying the structure of the system (e.g., by adding sensor
measurements) is often hard and expensive.

2.2 Early Warning Systems

EWS combine preventive measures, such as risk and vulner-
ability assessment, with IDS, to provide a clearer “picture”
of the security situation and send warnings about potential
network intrusions [7]. They are regarded as a complemen-
tary solution to existing IDS/ADS, where their main benefit
lies in providing predictions of potential harm in unfamiliar
situations, typically with zero-day attacks [9].

Traditionally, IDS/ADS exist as a reactive security so-
lution where alarms are generally based on either a clear
deviation from normality or a strong evidence of misuse.
Differently from these systems, EWS proactively collect,
accumulate, and combine events that don’t necessarily form
part of a known attack signature or a clear anomaly in
order to form a better picture of the security situation. For
example, Chivers et al. [24] consider events such as failed
connections, failed logins, and anomalous phone calls to be
weak indicators of malicious insider activity. Such events by
themselves may not be considered by an IDS/ADS. These
indicators are then aggregated and accumulated using a
Bayesian score that reflects the probability of a node be-
ing subverted. Furthermore, EWS go beyond IDS/ADS by
incorporating a mechanism to predict potential harm to
the system using, for instance, statistical modelling as in
the work of Abbaszadeh et al. [25]. While EWS by them-
selves may not necessarily detect attacks, they can guide
the selection of actions that may in turn reveal a potential
intrusion. For example, the framework proposed by Brignoli
et al. [26] allows the evaluation of the potential impact of
active countermeasures in IoT networks.

Recently, a growing body of work has considered this ap-
proach in traditional IT systems to tackle slow and stealthy
attacks [9]. Apel et al. [27] proposed an EWS that relies
on intelligence sharing between different organisations to
counter advanced coordinated attacks at their early stages.
Kalutarage et al. [28], [29] proposed a Bayesian approach,
which accumulates evidence over long periods of time to
counter network attacks in their reconnaissance phase. The
reader is referred to the work by Ramaki et al. [9] for a



3

comprehensive survey of existing work on EWS and a more
detailed comparison of EWS and IDS/ADS.

To the best of our knowledge, a very limited number of
works apply EWS to ICS. One exception is the recent work
by Abbaszadeh et al. [25], which generates early warnings
based on potential anomalies predicted by learning time
series behaviour. Instead of relying on training statistical
models, we use in our work ideas from reachability analysis
based on a standard identified model of the system.

Other related work in the context of ICS/CPS has pro-
posed online monitoring techniques based on a notion of
proximity to a predefined set of unsafe or critical states [30],
[31], [32], [33]. For example, Carcano and Coletta [31], [32]
proposed the use of distance metrics such as Euclidean
distance to a set of unsafe states represented as boolean
expressions over state variables. Castellanos and Zhou [33]
further extended this notion by computing an approximate
“time-to-critical” states metric, based on Euclidean distance
and the rate of change of the physical states. Similarly to
these approaches, we compute proximity from the current
state of the system which is estimated based on received
sensor values. However, this estimated state may not be
representative of the state of the system if the latter is under
a stealthy attack. Thus, our notion of proximity bounds —
with a certain confidence level — the actual state of the
system. To generate early warnings before a stealthy attack
can cause damage, we also predict the state of the system for
a certain number of time steps in the future. This prediction
is similar to the work by Etigowni et al. [30] and relies on
an approximated model of the system and the monitoring
of controller states.

Bradford et al. [34] proposed the idea of a tiered ap-
proach for EWS. First, they profile agents in a system by
accumulating preliminary data, then they perform more
detailed investigations and intensive data collection if some
pre-defined thresholds are crossed. Chivers et al. [24] imple-
mented a layered approach for insider attacks in networked
systems, while Kalutarage et al. [35] did it for cyber conflict
attribution. Differently from this work, we focus on gen-
erating early warnings about stealthy attacks in ICS. The
novelty of our approach lies on the measurement of grounds
for suspicion based on the physical state of the ICS.

2.3 Attack Impact Assessment in CPS/ICS

Our work builds on recent research assessing the physical
impact of stealthy attacks on CPS and ICS. In particular,
we adapt techniques based on reachability analysis [10],
[36], [37] to provide measures of the proposed grounds for
suspicion. While in previous work such techniques were
mainly employed to assess the security of a system and
perform offline risk analysis, here we adapt them for online
monitoring.

Existing risk assessment approaches in the context of
ICS security are based on the assumption that the sys-
tem will have steady states when subjected to an attack.
However, this assumption can fail when long transients
are experienced in operating conditions. This is true in the
process industry, where changes in operating conditions
are frequent due to external disturbances and real-time
optimisation requirements [38].

reactants in products out
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Fig. 1. Reactor schematic.

In our instantiation of the framework to LTI systems,
our approach is similar to that of Kwon et al. [37]. However,
the main difference is that Kwon’s algorithm is designed
specifically to cater for Unmanned Areal Vehicles (UAV)
applications, where safety constraints are time-varying and
have a different mathematical expression to constraints typ-
ically found in process control applications that we con-
sider. Furthermore, Kwon’s algorithm requires updating the
reachable ellipsoid at each time step through a recursive
structure, which may be resource-intensive as it is not clear
it can scale well with a large number of state variables
typically found in process control applications.

Finally, several approaches exist to assess the impact of
stealthy attack strategies in CPS/ICS. For example, on the
one hand, Milosevic et al. [39] propose the use of the infinity
norm of critical states after a certain time period and present
a framework for security measure allocation offline given
attack complexity and impact measures. Urbina et al. [40],
on the other hand, consider the rate of change of the physical
variables under a stealthy attack as a measure of impact.
In this paper, we do not focus our attention on computing
the impact of a stealthy attack. Instead, we generate early
warnings in real-time depending on the likelihood of a
stealthy attack to be successful.

3 MOTIVATING EXAMPLE

Consider a chemical reactor equipped with a controller that
keeps the level of liquids in the reactor at a desired set-point
(Figure 1). An attacker with access to channels communicat-
ing level values to the controller, wishes to cause physical
damage to the system. To maximise chances of success
and avoid detection, the attacker uses his/her knowledge
of the physical behaviour of the system (obtained through
reconnaissance activity) and its anomaly detector.

The attacker takes advantage of the safety-critical oper-
ating mode of the reactor, and modifies level sensor values
such that the bias between real and received values grows
slowly over time. This in turn tricks the controller into
slowly increasing the level in the reactor, which is driven
to the point of overflow (top part of Figure 2). This may
have significant consequences, such as a fire, especially if
the reactor is operating at high temperature or pressure.
In addition, data stored on low-level control devices (e.g.
Programmable Logic Controllers’ (PLC) configurations, sen-
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Fig. 2. Real and received reactor level values (top), as well as anomaly
detector residual metrics (bottom). The reactor overflows at t ≈ 67h,
34h after the start of the attack.

sor/actuator states) that could be useful during incident
response, would be lost.

In this example, the system is equipped with a chi-
squared anomaly detector commonly used to detect de-
viations from normality which can be caused by system
faults or attacks. At each time step, the anomaly detector
uses control inputs, historical sensor measurements, and
a model of the system to predict sensor measurements.
These predictions are then compared with the received
measurements (black line in the top of Figure 2) using a
metric, called residual. The residual computes the difference
between expected and received measurements and uses a
statistical change detection technique (chi-squares) to detect
anomalies once a threshold is crossed. This metric fails to
raise any alarm before the reactor level crosses the safety
limits. It is worth noting that “model-agnostic” detectors
that rely on statistical modelling such as the one proposed
by Aoudi et al. [41] and Krotofil et al. [42] may also fail
in detecting attacks like the one illustrated in this section.
This has been shown empirically in the work by Erba and
Tippenhauer [43]. Namely, such detectors cannot reliably
learn important control-theoretical properties that a knowl-
edgeable adversary may exploit to remain undetected. In
this work, we consider model-based anomaly detectors, and
particularly the chi-squared anomaly detector as it is widely
studied in the literature.

Existing online monitoring techniques which rely on a
notion of proximity to unsafe states (e.g. [31], [33]) may not
be able to detect the illustrated attack since they rely on raw
sensor values to measure a distance metric to unsafe states.
In the case of the present example, the attacker has forced
the received sensor values to appear lower than their real
counterparts. Therefore, the evolution of the system towards
an unsafe state will not be obvious if the proximity measure

relies on raw sensor values.
Differently from previous work, we monitor whether a

potential stealthy attack tampering with control devices can
take the system to an unsafe operating region. We impose
on the attacker constraints brought by the anomaly detector
and the physics underlying the system, to check whether an
attack can damage the system before being detected. Our
framework triggers an early warning when a measure of
the likelihood of success of a stealthy attack in real-time
exceeds a given threshold. Thus, an EWS configured using
our framework would have raised a warning well before the
stealthy attack exemplified in this section could cause harm.

Early warnings can trigger data collection activities,
which can help profile a potential intrusion and prevent
the loss of potential evidence. Operators can also engage
safety measures to prevent harm. However, in this paper
we focus on providing “physics-based” early warnings and
defer a detailed treatment of post-warning measures to
future work.

4 PROPOSED EWS FRAMEWORK

In this section, we present the main contribution of this
paper, which is a framework for physics-based EWS in
ICS. Our framework builds on the tiered approach for EWS
used by Bradford et al. [34] and Chivers et al. [24]. These
approaches monitor preliminary indicators, often called
weak evidence until their evidentiary weight crosses a certain
threshold and triggers a warning. The main novelty of the
present work lies in its consideration of stealthy attacks on
ICS that affect the physical process. To this end, our frame-
work accumulates weak evidence collected by monitoring
the physical processes in ICS. In the following, we detail the
nature of this evidence and the structure of our framework.

4.1 Framework Structure
Figure 3 shows an instantiation of our framework to a
control system. The latter mainly takes as input estimates of
physical state variables provided by some state estimator as
well as the current state of the controller(s). These estimates
are then used to measure the feasibility and proximity
grounds for suspicion, which act as weak evidence of a
stealthy attack by reflecting its likelihood of success. These
two grounds are then combined and measured via a suspi-
cion metric, which in turn reflects their evidentiary weight,
and triggers a warning when crossing a certain threshold.
Depending on the criticality of the crossed threshold, differ-
ent actions may follow, such as further evidence collection
or safety measures initiation. Identification of these actions
is outside the scope of this work.

4.1.1 Grounds for Suspicion.
An attacker wishing to avoid detection will manipulate the
system in a way that keeps the difference between estimated
predictions and actual sensor readings sufficiently small.
Our framework does not attempt to distinguish an anoma-
lous behaviour by comparing the two. Instead, it measures
the following grounds for suspicion:

• Feasibility of a Stealthy Attack: given the dynamics of the
system and the constraints imposed by the anomaly
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Fig. 3. An instance of the proposed framework within a typical control system and a sample interface. (y(t) = sensor measurements, u(t) = control
signal, ȳ(t) = sensor measurements received by the controller, ū(t) = control signal received by system — respectively at time t.)

detector, we check whether the current state of the
system can be taken to an unsafe state (hence causing
damage) while avoiding any alarm in the process.

• Proximity to Unsafe States: given the current state of the
system, if an attack is actually taking place without
having been detected, we monitor how far would the
system be from reaching an unsafe operating region.
The closer the system is to this region, the more likely a
stealthy attack is successful, as the attack may take less
time to achieve its goal.

The feasibility of a stealthy attack and the proximity of
the system to an unsafe state do not necessarily imply
that a malicious activity is taking place. However, they can
indicate that a stealthy attack may successfully damage the
system. Hence, we consider them to be weak evidence of a
potential stealthy attack, in the same manner a failed login
attempt may be suspicious but cannot be used as evidence
of an intrusion.

4.1.2 Suspicion Metric
The evidentiary weight of events that can trigger early
warnings is typically measured using a certain metric. For
example, Chivers et al. [24] assign a Bayesian score to
network nodes that generate events considered as weak
evidence. We propose an analogous score, called suspicion
metric. This metric essentially measures in real-time the
likelihood that a potential stealthy attack will cause damage
to the system before being detected by combining these two
grounds for suspicion. At runtime, a human operator would
be provided with the evolution of the suspicion metric over
time (Figure 3). If the metric crosses a certain threshold, a
warning is raised.

4.2 Suspicion Metric Soundness Principles
As several types of physical systems can be modelled
with different formalisms (e.g. continuous-state vs. discrete-
event/hybrid), we do not attempt to propose a formula to
compute a suspicion metric. Instead, we provide soundness
principles, so that irrespective of the system where the frame-
work is instantiated, the metric can reflect the grounds for
suspicion in a sound manner:

1) The metric must include at least one clear threshold
which if crossed, a warning is issued. We propose two
thresholds (Figure 3): (i) one of low-criticality, which
may trigger intensive data collection to proactively
check for intrusions; and another (ii) of high-criticality
typically triggering measures preventing a safety inci-
dent.

2) The metric should increase over a certain time inter-
val if a) the likelihood of the real physical state of
the system diverging from the provided estimate and
evolving into an unsafe operating region is increasing
(feasibility); or b) if the system is evolving closer to
unsafe states meaning that a potential attack is less and
less time consuming for the attacker (proximity).

The first principle ensures that the EWS can advise an oper-
ator about the current security situation. The second ensures
that the metric provides a measures the evidentiary weight
of the grounds for suspicion and can inform operators about
the likelihood of success of a potential stealthy attack.

4.3 Framework Configuration Requirements

The configuration of the framework involves mainly pro-
viding measures of feasibility and proximity to construct
a suspicion metric according to the soundness principles
provided earlier. This can be performed by reusing existing
techniques proposed in the domain CPS/ICS security. For
example, techniques to compute reachable sets under a
given stealthy attack [10], [37] can be used to measure
feasibility, while distance metrics such as the Euclidean or
Hamming distance, can be used to measure proximity given
the real-valued nature of most physical state variables.

Therefore, to configure the framework, we require
mainly (i) a mathematical model of the system, including its
controller and the unsafe operating region; (ii) information
on the used anomaly detection method; and (iii) a model
of an attack at the level of physical process. Note that (i) is
standard in control engineering and safety analysis, while
the threat model (iii) is only required to show the effect of
a potential attack on the control loop. There exist several
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Fig. 4. Proposed instantiation of the framework to LTI systems. (δ(t) denotes potential attack signal.)

works [44], [45] that provide effective ways of modelling
such effects.

In this paper we focus on applying the framework to sys-
tems that can be modelled using the Linear-Time Invariant
(LTI) modelling framework — we defer the study of other
systems to future work. Given a certain operating range,
several control systems can be approximated with high
accuracy by an LTI model using well-established techniques.
This modelling framework is especially applicable to several
problems in the process control industry [46].

The proposed instantiation of the framework to LTI
systems is outlined in Figure 4. We formulate the suspi-
cion metric computation as a reachability problem. Namely,
given the real-time estimated physical state of the system,
the reachability problem asks whether a stealthy attack can
cause damage to the system without being detected. To en-
able efficient reachability analysis in real-time, our approach
computes lightweight symbolic ellipsoidal approximation of
the reachable set under attack offline, thus restricting the
bulk of the computation to a design-time activity. This is
possible by considering the evolution of the state estimation
error under stealthy attacks rather than the physical state
itself. By using analysis tools from the literature, namely
the method developed by Murguia et al. [10], we obtain
an approximation of the reachable set of the error in the
form of an ellipsoid centred at a given state estimate. The
real state of the system, if it is under a stealthy attack, lies
in this ellipsoid. The measures of feasibility and proximity
subsequently rely on checking whether this set intersects
a predefined set of unsafe states. To make these emptiness
checks possible in real-time, we take advantage of the el-
lipsoid nature of the reachable set approximation and the
fact that in most scenarios, safety constraints can be inter-
preted geometrically as a union of half-spaces. In this case,
emptiness checks reduce to checking the sign of the distance
between the ellipsoid and the half-spaces composing the
unsafe set.

5 SYSTEM DESCRIPTION

This section describes the modelling formalism used to rep-
resent the system and the controller, the anomaly detector
and the threat model.

5.1 Physical System and Controller

The evolution of the physical state of a standard, frequently
used Linear-Time Invariant (LTI) model is given as follows:{

x(k + 1) = Ax(k) +Bu(k) + w(k)

y(k) = Cx(k) + v(k)
(1)

The matrices A, B, and C are real, time-invariant, and of
appropriate dimensions. The state of the system is given by
the vector x(k) ∈ Rn, sensor measurements by y(k) ∈ Rm

and control input by u(k) ∈ Rp where k = t/∆t ∈ N
denotes discrete time instants with ∆t being the sampling
period. Process disturbances w(k) and sensor noise v(k) are
assumed to follow a zero-mean Gaussian distribution with
covariance matrices Σ1 and Σ2, respectively. We assume
that the system is observable and controllable in a control-
theoretical sense. Furthermore, the system is equipped with
an output feedback control loop, such that given received
sensor measurements ȳ(k) and a set-point reference yr(k), a
control signal u(k) = K[ȳ(k) − yr(k)] based on the control
law K[.] is sent to the process at each time step. We assume
that the system is stabilised by this controller.

A subset of state variables, denoted as “critical”, and
grouped in a vector xc = Ccx, xc ∈ Rn

c , Cc ∈ Rnc×n,
are required to remain within certain bounds to ensure safe
operation. Unsafe conditions can be written in the form of
a linear combination of the state variables. Thus each linear
combination of state variables denoting safety constraints
can be geometrically interpreted as a half-space in Rn. Let
Su denote the unsafe operating region, this can in turn be
interpreted as a union of half-spaces as follows:

Su =

{
x(k) ∈ Rn |

nc⋃
i=0

Cc,ix(k) ≥ bi

}
(2)
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Where bi denotes the safety bound on the ith critical state
variable (or the ith half-space scalar from a geometric point
of view), and Cc,i denotes the ith row of the matrix Cc.

Although our main concern in this paper is with stealthy
attacks that seek to cause physical damage to the system,
our modelling framework can accommodate other objec-
tives for stealthy attacks. For example, if we are worried
about attackers causing economic loss by driving the system
to an “expensive” operating state, then the relevant state
variables and constraints can be added to Su to express such
an expensive operating region. We are planning to consider
this type of stealthy attacks in future work.

5.2 Anomaly Detector
At a time k, given previous estimates and control actions,
the state estimate x̂(k) and expected sensor measurements
ŷ(k) are provided by a Kalman filter:

x̂(k) = Ax̂(k − 1) +Bu(k − 1)

+ L(ȳ(k − 1)− Cx̂(k − 1))

ŷ(k) = Cx̂(k)

(3)

Where the design parameter L is the observer gain matrix,
the existence of which is guaranteed by the observability
of the system. The estimated sensor measurement ŷ(k) is
compared with the received value y(k) using a residual
metric; r(k) := y(k) − ŷ(k). Under nominal conditions,
the residual metric has a zero-mean and a covariance ma-
trix Σ. To check for this hypothesis, a chi-squared metric,
z(k) = rT (k)Σ−1r(k) is computed and compared with a
threshold τ , such that exceeding this threshold implies a
possible anomaly and raises an alarm. τ can be set according
to a desired false alarm rate β. The reader is referred to [10]
for more detail on the derivation of the observer gain matrix
L, the anomaly detection threshold τ , and the residual’s
covariance matrix Σ under nominal conditions.

5.3 Threat Model
In this paper we consider false data injection attacks on
sensors, which consist of falsifying sensor values such that
the controller drives the system into unsafe operating levels.
Such attacks are typically modelled as a bias imposed on
y(k) [45]. Let {ks, . . . , kf} be the time period of the attack,
the actual sensor readings ȳ(k) received by the controller
are then given as:

ȳ(k) =

{
y(k) + δ(k) ∀k ∈ {ks, . . . , kf};
y(k) otherwise

(4)

Under such attack, the anomaly detector’s chi-squared
metric is given by:

z(k) = (y(k)− ŷ(k) + δ(k))Σ−1(y(k)− ŷ(k) + δ(k)) (5)

The attacker, having knowledge of the anomaly detector
parameters (i.e. Σ, β and τ ) can maintain the stealthiness
of the attack by ensuring that δ(k) maintains a nominal
false alarm rate; i.e. Pr[z(k) ≤ τ ] = 1 − β. We use this
characterisation of a stealthy attack because it represents
more realistically an advanced attacker wishing to remain
stealthy until at least achieving the objective of damaging

the system. In practice, given K time steps, the attacker
may choose to raise alarms for βK steps; thus mimicking
the false alarm rate as closely as possible. Due to space
limitations, the reader is referred to [47] for a more detailed
description and analysis of the distribution of the detector
metric under such attack.

6 INSTANTIATING THE PROPOSED FRAMEWORK
FOR LTI SYSTEMS

The proposed physics-based EWS component takes as in-
put the vector of estimated state variables x̂ in addition
to the state of the controller. We initialise the suspicion
metric SUSP as a function of two terms: feasibility FEAS
and proximity PROX. In this section, we instantiate the
proposed framework for the system described in Section 4.
We use analysis tools from the literature to construct a
formula for FEAS and PROX. In a previous work [15],
we showed how to perform efficient online safety checking
for LTI systems under stealthy attacks. In this section, we
describe the safety checking algorithm and we extend it by
including the suspicion metric. We also design thresholds
for warnings of different criticality to apply the algorithm to
the proposed framework. We also show how the proposed
algorithm satisfies the soundness principles proposed in
Section 4.

6.1 Feasibility Measure
The attack in (4) is defined to be feasible if (i) the corrupting
signal can maintain the nominal false alarm rate throughout
the attack and (ii) at the end of the attack the system
can be driven to unsafe operation. This can be stated as
a reachability problem. Namely, let Rx(k) be the set of
reachable states at time k due to the attack (4):

Rx(k) = {x(k) ∈ Rn | x(k) is s.t. (1)

∧ δ(k) is s.t. Pr[z(k) ≤ τ ] = 1− β} (6)

The attack (4) is then feasible at time k if, for the nextK time
instants, there exists an instant kf ∈ {k, . . . , k+K} such that
Rx(kf ) ∩ Su 6= ∅. As a measure of feasibility, we propose
to use a function of the size of this intersection. However,
computing Rx(k) and the size of Rx(kf ) ∩ Su exactly in
real-time is intractable. Furthermore, since x(k) is partially
driven by the Gaussian noise w(k) which has an infinite
support, computing Rx using deterministic methods will
yield an unbounded set.

We address intractability by approximating a symbolic
reachable set offline parametrised by the state estimate.
We compute the resulting set under the assumption of a
bound on the energy of the noise with a certain confidence
level, thus preventing unbounded reachable sets. As such,
computing the a feasibility measure (and subsequently the
suspicion metric) involves an offline initialisation step as
well as online emptiness checks of Rx(kf ) ∩ Su.

6.1.1 Offline Initialisation
To approximate a symbolic reachable set offline
parametrised by the current state estimate, we consider the
reachable set Re of the estimation error e(k) := x(k)− x̂(k)
under an attack. Assuming the initial error at the beginning
of an attack is always almost zero, this set is independent
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of the physical state at the start of the attack. Hence,
computing it offline would provide a symbolic reachable
set as a function of the provided state estimate, which can
then be instantiated online. We use the method proposed by
Murguia et al. [10] to compute an ellipsoidal approximation
of the reachable set of estimation error under a stealthy
attack.

Based on Equation (3), the estimation error under an
attack evolves according to the following:

e(k + 1) = Ae(k)− L(y(k)− ȳ(k) + δ(k)) + w(k) (7)

To address the problem of computing Re when the error is
partially driven by the Gaussian noise w(k) and the attack-
dependent sequence δ̄(k) = y(k) − ȳ(k) + δ(k), we set a
confidence level on the energy of both of these vectors.
Given the threat model described in (4), we have for the
sequence δ̄(k) that Pr[z(k) ≤ τ ] = Pr[‖Σ−1/2δ̄(k)‖2 ≤ τ ] =
1 − β where ‖.‖ denotes the L2-norm. As for the noise,
since it follows a Gaussian distribution, a bound w̄ on its
energy ‖w(k)‖2 can be set for a desired confidence level
p = Pr[‖w(k)‖2 ≤ w̄] using the gamma or the chi-squared
distribution [10], [47].

Using this truncation of the distribution of δ̄(k) and
w(k), we compute an ellipsoidal approximation Epe of Rp

e

offline for a desired confidence level p. A larger confidence
level would lead to a larger set, at the cost of being overly
conservative with the emptiness checks. A reasonable choice
for p would be 1− β, as the false alarm β is designed to be
small. This also simplifies the computation of the reachable
set, since for p = 1−β, we readily have Pr[‖w(k)‖2 ≤ w̄] =
Pr[z(k) ≤ τ ] under the attack in (4).

Given the system model (1), the Kalman gain L, the
anomaly detector threshold τ , and the p-probable bound
w̄ on the process noise energy, it is possible to compute an
ellipsoidal approximation Epe ⊇ Rp

e of the following form:

Rp
e ⊆ Epe = {e(k) | eT (k)Π−1e(k) ≤ 1} (8)

Where Π is called the ellipsoid’s shape matrix. The com-
putation of Π involves solving a Linear Matrix Inequality
(LMI) problem given the aforementioned parameters. Note
that since we assume the system to be stable, the matrix Π
exists [10]. Due to space limitations, the reader is referred
to [10] and [47] for more details on this procedure and the
effect of the choice of p on the tightness of the ellipsoidal
approximation.

Note that this step is performed only once offline, and
only the matrix Π needs to be stored for online emptiness
checks. Therefore, the computation of this ellipsoidal ap-
proximation does not affect real-time performance. Given
the matrix Π, and replacing e(k) by its definition, we
obtain a symbolic ellipsoidal approximation Epx(x̂(k)) of
the reachable set Rp

x(x(k)) of the actual system state x(k),
parametrised by the current state estimate x̂(k):

Rp
x(x(k)) ⊆ Epx(x̂(k)) =

{x(k) ∈ Rn | (x(k)− x̂(k))TΠ−1(x(k)− x̂(k)) ≤ 1}
(9)

This ellipsoidal approximation can then be instantiated
online at a time k given the current state estimate x̂(k).

6.1.2 Online Emptiness Checks
At runtime, given the current physical state estimate and
the state of the controller, we predict the state of the system
for K steps into the future using the identified model of the
system. For each predicted state x̂(k + l), l ∈ {0, . . . ,K},
we instantiate the ellipsoidal approximation Epx(x̂(k+ l)) of
the reachable set under a potential stealthy attack. Since the
reachable ellipsoids computed offline are parametrised by
the state estimate (Equation (9)), we can instantiate them at
each predicted state without the need for further operations.
Upon encountering a state where Epx(x̂(k+ l))∩Su 6= ∅, the
prediction stops, and we compute the size of this intersec-
tion as a feasibility measure.

At each predicted state x̂(k + l), we take advantage of
the ellipsoidal nature of Epx(x̂(k + l)) and the fact that Su
can be interpreted geometrically as a union of half-spaces to
perform efficient emptiness checks of their intersection. For
each hyperplane delimiting a half-space in Su, we compute
the distance from the ellipsoid Epx(x̂(k+ l)). The intersection
is then non-empty if the distance value is negative [12].

When the intersection is non-empty, it is possible to
approximate the intersection of Epx(x̂(k + l)) with each of
the half-spaces Hi ⊆ Su using an ellipsoid Epx,i of shape
matrix Πi. Boyd and Vandenbergh [14] provide an equation
to efficiently compute this shape matrix, which we omit
here for brevity. We use the ratio of the volume of this
approximate ellipsoid to the reachable ellipsoid to measure
feasibility:

FEAS(k) = VE,l̂/VE (10)

Where VE,l̂ = maxi=1,...,nc [vol(Epx,i)] is the maximum inter-
section volume obtained at time k + l̂ among the intersec-
tions of Epx(x̂(k + l)) with each of the half-spaces Hi ⊆ Su.
VE = vol(Epx) is the volume of the reachable ellipsoid.

6.2 Proximity to Unsafe States
Given the real-valued nature of the physical state variables,
one can employ a simple measure based on Euclidean
distance to compute the proximity of the system to the set
of unsafe states. This approach was employed by Coletta et
al. [32]. However, as the actual state of the system may be
different from the given estimate (due to a potential stealthy
attack), this simple distance measure may not reflect the
actual proximity of the system to unsafe operating region.
Such measure also does not reflect how fast the system may
evolve to an unsafe state under a potential stealthy attack.

We make use of the procedure used to compute the
symbolic reachable set explained in Section 6.1.2. If we find
that Epx(x̂(k+ l))∩Su 6= ∅ for an l = l̂, then we can conclude
that under a potential stealthy attack, the system may be
damaged after at least l̂ time instants. Hence, we use the
following as a measure of proximity:

PROX(k) = 1/(1 + l̂) (11)

6.3 Algorithm and Metric Soundness
Algorithm 1 outlines the steps taken online to perform
online safety checks and compute the suspicion metric. The
computation of this metric consists of three main steps: (1)
Given the current estimated state x̂(k) of the system and
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Algorithm 1 Computing the Suspicion Metric Online
INPUTS: (K,Π, x̂(k), ControlState, Su)

1I x̂p ← x̂(k)
2I for all l ∈ {0, . . . ,K} do

. Instantiate the reachable ellipsoid at current predicted
state

3I ReachEll←ELLIPSOID(x̂p,Π)
4I for all Hp,i ⊂ Su do
5I DistToUnsafe← DIST(ReachEll,Hyperplane)
6I if DistToUnsafe < 0 then

. Raise non-empty intersection flag and compute the shape
matrix of the intersection ellipsoid

7I isNonEmpty← FALSE
8I Πi ← ELLINTERSECT(ReachEll,Hyperplane)
9I VE,i ← VOLUME(Πi)

10I else
11I VE,i ← 0
12I end if
13I end for
14I if !isEmpty then

. Break the loop and return the suspicion metric
15I FEAS←MAX(VE,i)/VOLUME(ReachEll)
16I PROX← 1/(1 + l)
17I SUSP← FEAS × PROX
18I return SUSP
19I else . Predict next state
20I x̂p ← PREDICTCONTROLFLOW(x̂p, ControlState)
21I end if
22I end for . If no intersection with the unsafe set is found to

be non-empty, then the suspicion metric is 0
23I return 0

the state of controllers, we predict the evolution of the state
for a specified number of time steps into the future. Note
here that there is no need for an assumption on the value
of a potential attack δ(k), as the reachable set instantiated
at the predicted states will contain the real state of the
system if it is indeed under an attack. (2) For each predicted
state, the approximate reachable set under stealthy attacks
is instantiated and emptiness checks of its intersection with
the set of unsafe states are performed. (3) If the intersection
is non-empty at a time k + l̂, the prediction stops, and the
suspicion metric is computed as follows:

SUSP(k) = FEAS×PROX =
VE,l̂

VE(1 + l̂)
(12)

If the intersection is empty for all the states predicted within
the specified number of steps, then SUSP(k) = 0.

6.3.1 Algorithm Complexity
In Algorithm 1, the prediction of the state of the system
relies on an identified LTI model. As evident from Equation
(1), the computation of the next state involves mainly vector
addition and matrix-vector multiplication — operations that
scale polynomially with the number of physical states. Thus,
given a fixed number of physical states, the prediction
is expected to scale linearly with the maximum number
of time steps for prediction K . Furthermore, checking the
emptiness of the intersection of the current reachable el-
lipsoid with the set of unsafe states relies on computing
the distance between the two sets. This distance, whose
formula can be found in [12], relies also on performing
matrix-vector multiplication and computing vector norms,

which scales polynomially with the number of states. For a
fixed number of states, and since this distance is computed
for each safety condition in the set of unsafe states, the
emptiness checks will scale linearly with the number of
safety constraints. The same reasoning applies to the matrix
intersection procedure [14] and its corresponding volume,
which involves matrix addition and determinant operations.
Several constant parameters involved in the computation
of ellipsoid-to-half-space distances, the intersection between
the two sets, and the feasibility metric can be pre-computed
offline to improve real-time performance. These parameters
include the volume of the pre-computed reachable ellipsoid
and the norms of the half-space normal vectors Cc,i (Equa-
tion (2)) representing safety conditions.

6.3.2 Metric Soundness
An increase in the value of the metric can imply one of the
following: (i) VE,l̂ is increasing, indicating that it is becoming
increasingly likely for the actual state of the system to
diverge from the estimate and enter an unsafe operating
region due to a stealthy attack; (ii) l̂ is decreasing, indicating
that the system is in increasing proximity to unsafe opera-
tion regions. Thus, the proposed metric serves as a measure
of likelihood of the attacker being able to take the system
into unsafe states (feasibility) penalised by the number of
time steps required to damage the system (proximity).

To raise physics-based early warnings, we propose two
thresholds based on the value of l̂ returned by Algorithm
1. This value indicates the time that would be needed by
a potential attack to cause damage before being detected.
Let l1 be the time required by the operators to perform
necessary preemptive actions after a low-criticality warning,
and let l2 be the time necessary to perform potentially more
drastic actions after a high-criticality warning, with l2 < l1.
l1 and l2 can be set based on expert knowledge of the system
in question and the post-warning measures to be taken.

Accordingly, we set two conditions for different critical-
ity thresholds in this case study:

1) A “low-criticality” warning is raised when l̂ ≤ l1 and
VE,l1/VE ≥ 0.5. These conditions imply that if the
system is under a potential stealthy attack, the damage
will likely take place after at most l1 time instants.
However, l1 is sufficient to perform preemptive low-
criticality actions, such as collecting potential evidence
of an attack.

2) A “high-criticality” warning is raised if the suspicion
metric shows that the attacker is likely to cause damage
in a smaller time frame. Namely, this type of warning
can be raised when l̂ ≤ l1 and VE,l1/VE ≥ 0.5 with
l2 < l1. In this case, high-criticality preemptive actions
can be taken, such as engaging safety measures.

The above discussion shows that the proposed metric
satisfies the soundness principles proposed in Section 4.

7 EVALUATION

In this section, we describe the virtual testbed that we used
to evaluate our framework. Using numerical simulations we
validate whether our framework can warn well in advance
of damage caused by a potential stealthy attack. We also
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assess scalability and network performance of our frame-
work. Finally, we discuss the usefulness of our framework in
supporting early evidence collection in a use case scenario.
All activities conducted to support the evaluation were
performed on an Intel i7–9750H CPU clocked at 2.6 GHz
with 16GB of RAM memory.

7.1 Virtual Testbed

To evaluate our framework we rely on a modified simula-
tion of the Tennessee-Eastman Process (TEP) [48]. This is a
benchmark chemical process which is used extensively to
study problems in the process control field [49]. The process
involves an exothermic reactor and units to separate and pu-
rify chemical products. The temperature and pressure inside
the reactor are maintained using several control loops [50].
In the context of security, the complexity of this process
has allowed simulating the realistic behaviour of physical
processes under attack [51], [52], [53], [54], [55]. In addition,
the simulation-based TEP allows for a low-cost and safe
testing of the effect of attacks on physical operation.

We modified the MATLAB/Simulink simulation of the
TEP provided by Bathelt et al. [56] by adding blocks to
simulate the real-time behaviour of the control network,
sensors, actuators, and controllers. We also implemented a
Kalman filter-based anomaly detector to estimate process
measurements and detect anomalies. A diagram of our
testbed is shown in Figure 5.

The network is divided into four segments connected
by a “gateway” router to emulate the distributed nature of
modern ICS environments. In the control rooms, where the
physical process resides, sensors send measurements over
the first network segment to the gateway, which forwards
them to the appropriate node on the controllers’ network.
The controllers employ a similar procedure to send control
signals to the appropriate actuator nodes. The gateway
forwards sensor measurements and controller states to the
supervisory control room where the anomaly detector and
the proposed instantiated framework (indicated as EWS in
Figure 5) reside. The gateway then emulates Remote Ter-
minal Units (RTU’s) which are used to provide an interface
between control devices and servers in control rooms.

To simulate the real-time behaviour of sensors, con-
trollers, anomaly detector, and the network we use the
MATLAB/Simulink-based TrueTime library [57]. This li-
brary has been adopted to study the performance of net-
worked control systems [58], [59], and also in the con-
text of ICS security [60]. The TrueTime library provides
Simulink blocks to simulate medium access and packet
transmission for different industrial network models, such
as CAN, Round-Robin, PROFINET, etc. It also provides
“kernel blocks” for which custom MATLAB or C++ code can
be implemented to simulate different nodes (e.g. actuators,
sensors, controllers etc.) with specified scheduling policies.
The TrueTime library simulates medium-access and packet-
level network protocols, which are sufficient to study the
overhead incurred by the proposed framework.

We compiled the physical process implemented by
Bathelt et al. [56] into a MATLAB “mex S-function” to be
incorporated in the Simulink-based simulation. We imple-
mented sensor, actuator, and controller codes as TrueTime

Tennessee-Eastman 

Process

(MATLAB ‘mex’ function)

Actuators Sensors

Network 3

(Actuators)

Network 1

(Sensors)

‘Gateway’

(Remote Terminal Unit)

Network 3

(Control Network)

Controllers

Network 4

(Supervisory Network)

Anomaly Detector and 

EWS

Supervisory Room

Control Rooms

Fig. 5. Networked TEP testbed diagram.

TABLE 1
Safety constraints considered for the TE case study [48].

Output Low Limit High Limit

Reactor Pressure none 2895 kPa
Reactor Temperature none 150 ◦C

Reactor Level 11.8 m3 21.3 m3

Product Separator Level 3.3 m3 9.0 m3

Stripper Base Level 3.5 m3 6.6 m3

Kernels, representing the real-time behaviour of control
devices with a fixed-priority scheduling policy. The network
employs a Carrier Sense Multiple Access with Arbitration
on Message Priority (CSMA/AMP) model, which is widely
used in industrial Controller Area Network (CAN) bus
applications [61]. The TrueTime library assumes that higher-
level network protocols process messages into packets.

7.2 Numerical Simulations

7.2.1 Warning Before Harm Occurs
As the objective of our framework is not to detect attacks,
but to generate warnings of potential stealthy attacks before
harm occurs, we do not consider previous work on attack
detection (such as the work surveyed by Giraldo et al. [4])
a suitable baseline to compare our work against. Further-
more, true/false positive metrics, as traditionally defined
in the attack detection literature, are not suitable metrics to
evaluate our framework, as it is not meant to replace the
existing anomaly detector. Rather, our framework’s main
utility is in guiding the selection of actions that may reveal
a potential intrusion before damage occurs. Therefore, our
evaluation demonstrates how our algorithm warns well
in advance of potential damage and guides the selection
of post-warning actions based on the different thresholds
that we designed in Section 6. We perform this evaluation
using two attack scenarios conforming to the threat model
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described in Section 5. This approach is in line with previous
work on EWS [7], [25], [27], [29], [35], [62]. For each scenario,
we compare the warnings raised by Algorithm 1 to the
attack’s ability to cause damage without being detected.

To instantiate the framework, we first approximated the
LTI model (1) of the system using a standard system iden-
tification technique (linmod) in MATLAB. Table 1 shows
the safety constraints considered in the present case study,
based on the process description provided by Downs and
Vogel [48]. We derived an appropriate Kalman filter us-
ing MATLAB’s built-in kalman function, and we set an
anomaly detection threshold based on a desired false alarm
rate of β = 5%. Furthermore, we computed the value
of the matrix Π in Equation (9) for a confidence level
p = 1− β = 0.95.

In our previous work [15], we performed a detailed
evaluation of the accuracy of the safety checking component
of Algorithm 1. In particular, we demonstrated how to
tune the length of the prediction horizon K to maximise
the prediction accuracy. We showed that for the TEP, a
K = 500, equivalent to≈ 15 min into the future, guarantees
a high accuracy in terms of prediction and safety checking.
Finally, we set the warnings described in Section 6 to be
such that a low criticality warning is issued if Algorithm 1
returns that damage can happen after 250 steps or less, i.e.
SUSP ≥ 0.004. A high criticality warning is issued if dam-
age can happen after two steps or less with a SUSP ≥ 0.5.

The results obtained for the attack scenarios are shown in
Figure 6. For each scenario, we plot the value of the reactor
level or pressure, residual, suspicion metric, and warning
level over time. Our results can be interpreted as follows:

1) In the first scenario (Figure 6-a), we re-use the same
operating conditions and attack described in Section 3.
The attack on the reactor starts at t = 30h, and the
liquids level increases until damage takes place ap-
proximately 37 hours later. A high-criticality warning
is however issued at around t = 48h, 19 hours before
damage takes place. If we relied only on a proximity-
based suspicion metric, we would not be able to detect
that the reactor was moving to an unsafe state.
Before the attack starts, a low-criticality warning level is
maintained most of the time. A high-criticality warning
is raised after the attack starts, but well before any dam-
age can happen (20 hours). Although a low-criticality
warning is raised constantly for a long period of time,
this does not imply that corrective actions should be
taken each time a warning is raised. Indeed, operators
can initially collect more data from the concerned area
of the system to confirm or refute the hypothesis that
an intrusion is present. This data can include network
traffic from the concerned area of the system, logs from
engineering workstations, PLC configurations - among
others. If the hypothesis is refuted yet a low-criticality
warning level is maintained, then data collection can
either stop or take place periodically in order to make
sure that no intrusion is present. This task can be au-
tomated using existing dedicated tools [63]. Moreover,
we expect the warnings generated by our framework to
be correlated with other alerts (e.g. cyber intelligence,
insider activity) generated by the EWS. This will pro-
vide a more accurate picture of the security situation.”

For example, these warnings can feed into a Bayesian
score similar to the one proposed in [28], [29] to monitor
potential network intrusions.

2) In the second scenario, we test the ability of Algorithm
1 to provide warning when the plant is attacked during
transient operating conditions. We consider a scenario
(Figure 6-b) where the reactor’s pressure is steadily
brought to lower levels over a long period of time.
The attack on the reactor’s pressure starts at t = 70h,
and excessive pressure starts building up in the reac-
tor until damage takes place approximately 18 hours
later. A high-criticality warning is however issued at
around t = 75h, 13 hours before damage takes place.
Even though the reactor pressure was being lowered
throughout the run, Algorithm 1 still identified a state
that can be taken to an unsafe operating region through
a stealthy attack. If we relied on a purely proximity-
based suspicion metric, the reactor’s pressure would
have appeared to evolve away from an unsafe state.

The scenarios above show that our algorithm can warn
well in advance of potential harm and can guide the selec-
tion of post-warning actions. We have considered attacks
on two sensors — reactor level and pressure — which
measure safety-critical process variables related to the most
important stage of the TEP — its reactor. While Scenario
1 illustrates an attack during typical steady-state opera-
tion, Scenario 2 considers transient operating conditions.
Scenario 2 highlights the effectiveness of our framework
in comparison with existing proximity-based techniques,
which would have failed to raise a warning as the plant
appeared to move away from unsafe pressure levels.

7.2.2 Scalability and Network Overhead
Scalability. We assessed the scalability of Algorithm 1 with
respect to (i) the number of safety constraints, and (ii)
the length of the prediction horizon K set by operators.
For both cases, we averaged the execution time over a
100-hour simulation of the networked TEP, equivalent to
2 × 105 executions of the algorithm given the sampling
time ∆t = 5 × 10−4 hours ≈ 1.8 seconds. In addition,
for the purposes of performance testing, we modified Al-
gorithm 1 to simulate the worst-case execution scenario
where emptiness checks are performed at every predicted
state. To test for scalability against the number of safety
constraints, we generated random half-spaces representing
potential safety constraints. We also fixed the length of the
prediction horizon at K = 500, equivalent to about 15
mins into the future. For scalability with the length of the
prediction horizon, we used the safety constraints in Table 1.
Results are shown in Figures 7 and 8.

The worst-case execution time of the algorithm scales
linearly w.r.t. both the number of safety constraints and the
length of the prediction horizon. These results prove the
ability of the proposed algorithm to scale in safety-critical
scenarios, where a larger number of safety constraints are
imposed. Furthermore, at K = 1000 time steps, equivalent
to about 30 min ahead-of-time prediction, the worst-case
execution time ≈ 1.3 sec is less than the sampling period,
1.8 sec, which guarantees a satisfactory real-time response.
Note that real-time response can be further improved by
performing checks only when the estimated physical and
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(a)

Scenario 1

(b)

Scenario 2

Fig. 6. Numerical simulations corresponding to the attack scenarios described in Section 7.2.1. (a) scenario 1; (b) scenario 2.
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Fig. 7. Average execution time of Algorithm 1 vs. the number of safety
constraints.

controller states of the system (i.e. the main real-time inputs
to Algorithm 1) are undergoing significant changes, i.e. dur-
ing transient operation. Finally, the algorithm’s worst-case
execution time can be improved significantly by considering
an implementation in a compiled language such as C rather
than an interpreted language like MATLAB.
Network Overhead. To assess the effect of the proposed
algorithm on the performance of the network, we measured
end-to-end time delays at two critical locations in the net-
work: (i) between each sensor and its corresponding con-
troller; (ii) between each controller and its corresponding ac-
tuator. For each location, we averaged these measurements
over a 100-hour simulation. The values in Table 2 shows
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Fig. 8. Average execution time of Algorithm 1 vs. the length of prediction
horizon K.

the average, standard deviation, maximum, and minimum
time delays considering all sensors, controllers, and actua-
tors on the network. The proposed algorithm incurs little
additional delays on the network. This result is expected
since the installation of the proposed scheme requires that
only sensor values and controller states are uploaded to
the supervisory control room area (Figure 5). These values
are already uploaded to perform anomaly detection in the
absence of the proposed framework. It is worth noting that
these values are usually uploaded also to process historians
for various process control and diagnostics-related logging
activities. Therefore, the proposed framework is expected to
incur little overhead on the network.
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TABLE 2
End-to-End transmission time delays in ms between various components of the TEP — in the presence of the proposed scheme, (without it)

Point of Delay Measurement Average Standard Deviation Maximum Minimum

Sensors to Controllers (in ms) 6.017 (6.013) 2.78 (2.77) 9.65 (9.64) 1.52 (1.52)
Controllers to Actuators (in ms) 22.90 (19.05) 9.17 (8.41) 35.66 (33.91) 10.19 (1.15)

7.3 Use Case Scenario

Application

Server

Historian

Operator

Central Control Room

PLC

Reactor

SwitchRTU

Operator

Workstation

Remote Station (Control Room)

Fig. 9. Layout of the system showing the different attack steps (ya(t) =
fake bias). Sources of potential evidence are highlighted in blue.

7.3.1 Layout of the ICS

For the purposes of this scenario, we restrict our focus on
the reactor stage of the TEP. Namely, we assume that the
reactor is housed in a remote control station, the layout of
which is inspired by the laboratory experiment performed
by Sand [64] and is shown in Figure 9. The reactor’s temper-
ature controller is installed on a Programmable Logic Con-
troller (PLC), and a Remote Terminal Unit (RTU) is used to
interface with the PLC using a speciality software installed
on the engineering workstation. The RTU relays control data
to the central Supervisory Control And Data Acquisition
(SCADA) station, which includes process diagnostics and
alarms generated due to possible anomalies.

7.3.2 Attack Scenario

Consider the case of a disgruntled employee looking to
cause physical damage to the process. We adapt an attack
scenario proposed by Sand [64] which consists of the steps
shown in Figure 9. The employee uses his access credentials
to enter the reactor room and log onto the engineering
workstation. Using his knowledge of the physical process,
the employee changes the configuration of the PLC such
that false data is slowly injected into the temperature sensor
following the stealthy attack described in Section 3. Finally,
he leaves the reactor room before damage occurs.
Case 1: Low Criticality Warning. Following a warning of
low criticality, relevant data can be uploaded to the main
SCADA server to help profile an alleged attack. Figure 9
shows potential sources of data in low-level devices:

1) Access control device: Access control logs would show
that the employee was in the remote station as the
warning was issued.

2) Operator workstation/HMI: The HMI of the operator
workstation stores logs recording log-on events and
issued commands which can reveal the sequence of
actions performed by the employee. Vendor-specific
software [63] exists to extract and subsequently upload
such logs.

3) RTU/PLC: The current control program executing on
the PLC triggers events that can constitute an evidence
of the attack performed by the employee. Extracting
such information from PLC’s without having to power
it down is possible, for example, by recording mem-
ory variable values using proprietary software such as
PLCLogger [63].

By performing this live forensics activity, operators can
detect that the employee is initiating a stealthy attack. They
may then force the restoration of the PLC configuration and
the stored evidence may be used to potentially prosecute the
employee in question.
Case 2: High Criticality Warning. A high-criticality warn-
ing, such as the one shown in Figure 6-c would typically
be followed by measures to prevent a potential incident, in
addition to the data collection activities mentioned previ-
ously. In the present scenario, such measures could include
engaging a trusted backup PLC to handle the control of
the reactor instead of the one with the potentially malicious
configuration; or temporarily disabling the RTO module.

7.4 Discussion
Before concluding this paper, we make some final remarks
regarding both the usefulness of the framework and poten-
tial practical deployment issues.

7.4.1 Supporting ICS Forensics
Recently, an increasing body of work has considered foren-
sics in ICS [63], [65], [66], [67]. In these systems, the low
processing power of low-level devices such as sensors and
actuators limits the deployment of event-logging tools. In
addition, the process’ safety criticality limits the degree of
interference of forensic tools with the system. It is also often
impossible to shutdown an ICS to perform post-mortem
forensics, which forces operators to rely mainly on live
forensics methods [67].

The proposed framework can support live forensics by
triggering data collection activities only when a warning
about potential damage to equipment is raised. This selec-
tive data collection activity, as illustrated in the previous use
case scenario, reduces the overhead for the network and the
low-processing devices. In addition, measuring grounds for



14

suspicion in real-time reduces the risk of losing evidence
about a stealthy attack, in case this attack causes damage to
the ICS sensors and/or actuators.

Furthermore, note that in the scenario described previ-
ously, the attacker did not need to break into the network
or take advantage of a software vulnerability. An EWS
relying only on indicators based on network events may
not be able to warn well in advance of such an attack. Our
framework can complement an EWS that monitors insider
activity (e.g. [24]) by warning when such activity targets the
physical components and may cause damage.

7.4.2 Potential Limitations
First, the configuration of our framework may require
some manual effort. However, we remark that approximate
mathematical models of the system, its anomaly detector,
and unsafe operation are standard in control engineering.
Second, to alleviate the computational cost incurred by
reachability analysis, we computed approximate symbolic
reachable sets offline and instantiated them at runtime —
an approach inspired by simplex control architectures [11].
We realise nonetheless that the reachability tools we used
in the present case study are specific to LTI systems. To
increase generalizability of our results, in future work we
will explore adoption of a different set of tools to instantiate
our framework to different types of systems. Finally, to
reduce the risk of a potential adversary subverting the
EWS, one possible solution is to implement it on a Shadow
Security Unit (SSU) as proposed by Graveto et al. [68]. Such
devices are computers designed specifically to remain hid-
den from potential offenders. Encryption mechanisms can
also be added as an extra layer of security, to favour more
secure communications at the cost of potentially reduced
performance.

8 CONCLUSION

In this paper, we considered the problem of stealthy attacks
on safety-critical ICS. We proposed a framework which can
be used as part of an EWS to raise early warnings based
on grounds for suspicion representing “physics-based” pre-
liminary indicators of a stealthy attack. We defined two
grounds for suspicion based on the physical dynamics of
a system: (i) feasibility of a stealthy attack and (ii) proximity
of the system to unsafe operating regions. To monitor the
grounds for suspicion in real-time, we proposed a suspicion
metric based on a mathematical model of the system. We
also provided soundness principles to ensure that the met-
ric is consistent with the measured grounds. To illustrate
our framework, we considered the case of a safety-critical
chemical reactor system faced with a stealthy attack on its
sensors. We adapted reachability tools from the literature,
namely ellipsoidal calculus, to evaluate the suspicion metric
efficiently in real-time. We also illustrated with a use case
that our framework can support live forensics activities, by
triggering early evidence collection and preserving potential
evidence about a stealthy attack.

Going forward, we aim to apply our framework to dif-
ferent systems and attacks. We will consider other existing
threat models and modelling frameworks for the physical
process. We will also implement a prototype tool to reduce

the human effort required to instantiate our framework to
a specific system. In addition, we will investigate in more
detail the ability of different attack scenarios to cover the
space of the considered attack models in the context of
evaluating different instances of the proposed framework.
Finally, we will further investigate the applicability of our
work to ICS forensics.
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