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Abstract— Attacks on Industrial Control Systems (ICS) can
lead to significant physical damage. While offline safety and
security assessments can provide insight into vulnerable system
components, they may not account for stealthy attacks designed
to evade anomaly detectors during long operational transients.
In this paper, we propose a predictive online monitoring
approach to check the safety of the system under potential
stealthy false data injection attacks on sensors. Specifically,
we adapt previous results in reachability analysis for attack
impact assessment to provide an efficient algorithm for online
safety monitoring for Linear Time-Invariant (LTI) systems.
The proposed approach relies on an offline computation of
symbolic reachable sets in terms of the estimated physical state
of the system. These sets are then instantiated online, and
safety checks are performed by leveraging ideas from ellipsoidal
calculus. We illustrate and evaluate our approach using the
Tennessee-Eastman process. We also compare our approach
with the baseline monitoring approaches proposed in previous
work and assess its efficiency and scalability. Our evaluation
results demonstrate that our approach can predict in a timely
manner if a false data injection attack will be able to cause
damage, while remaining undetected. Thus, our approach can
be used to provide operators with real-time early warnings
about stealthy attacks.

I. INTRODUCTION

Industrial Control Systems (ICS) denote systems where
safety-critical physical processes are augmented with com-
putation and communication capabilities, e.g. transportation
systems, manufacturing, and chemical processes. Recently,
the security of ICS has received increasing attention, espe-
cially with the rise in the number of attacks against these
systems, e.g. Ukrainian power grid blackout [30]. Differently
from attacks targeting IT systems, attacks against ICS can
also cause physical damage, rather than only harming digital
assets, e.g. sensitive data. In particular, stealthy attacks,
where resourceful attackers exploit noise [4] or control theo-
retic properties [38] to avoid detection, can cause significant
damage. Although a variety of techniques [15] consider
the behaviour of the physical process to detect attacks on
ICS, the detection of stealthy attacks still presents several
limitations [16].

Assessing the risk of stealthy attacks involves performing
offline impact assessment [36, 19, 31, 45, 33, 44], which may
provide operators with more insight into potential vulnera-
bilities, such as the inability of a residual-based anomaly
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detector to detect certain sensor attacks before they cause
damage. However, offline impact assessment cannot account
for potential transients and variations in operating modes that
a physical system may experience. In particular, chemical
plants often experience long transients and frequent changes
in operating conditions due to potential unforeseen distur-
bances, real-time optimisation modules, or high-level control
decisions [34, 28]. Safety analysis consists of checking
whether, from a current state, the system can enter an unsafe
state given the current control settings. Conventional control
methods cannot guarantee the safety of the system given
the possibility of stealthy attacks to exploit noise or control-
theoretic properties to avoid detection [25]. Therefore, there
is a need for safety monitoring techniques that evaluate the
safety of the system in real-time given such threats.

The objective of this paper is to develop an efficient online
safety monitoring algorithm, specifically under stealthy False
Data Injection Attacks (FDIA’s) on sensors. We particularly
consider a practical stealthy attack model where the attacker
evades detection by ensuring that the false alarm rate of
the anomaly detector is maintained [36]. To the best of
our knowledge, only a few works [25, 11, 8, 13] fall
into this line of research, and they either do not consider
intelligently crafted stealthy attacks or are resource-intensive.
Conversely, our approach to online safety monitoring pro-
vides a computationally-efficient online mechanism to detect
the potential impact of a range of stealthy attacks, that would
be undetectable using traditional monitoring approaches. In
terms of efficiency and scalability, the main feature of our
approach is to perform the most computationally intensive
operations offline, and reduce the online safety checks to
a computation of a distance measure. Namely, the inten-
sive offline computations consist of approximating symbolic
reachable sets of states. When deployed online, these sets
only need to be instantiated depending on the current state
estimate and a prediction of the state over a certain time hori-
zon. We then take advantage of the geometric representation
of the reachable sets to perform efficient safety checks. This
general approach is inspired by the work by Chen et al. [9]
in the context of real-time monitoring for simplex control
architectures.

The main contribution of the current work is an efficient
and scalable online safety monitoring algorithm for Linear,
Time-Invariant (LTI) systems presented with the threat of
stealthy attacks. The efficiency of the algorithm stems first
from the offline pre-computation of a symbolic ellipsoid
approximation of the reachable set using a Linear Ma-
trix Inequalities (LMI) programme proposed by Murguia et



al. [36]. Second, we take advantage of results in ellipsoidal
calculus [6] and the half-space geometrical representation of
unsafe sets to perform fast real-time safety checks given an
instantiation of the pre-computed reachable set at a predicted
system state. When the algorithm is deployed online, it
performs a prediction of the system state given the current
state of the system and a specified time horizon. At each
predicted state, the pre-computed reachable set is instantiated
and emptiness checks of its intersection with the unsafe
set are performed. The algorithm halts when a non-empty
intersection is found or when the prediction time horizon is
exhausted.

As a secondary contribution, we propose two online secu-
rity metrics that can be computed by leveraging ellipsoidal
calculus. The potential impact metric quantifies the potential
impact of a stealthy attack. When the emptiness check returns
a negative result, the intersection between the reachable set
and the set of unsafe states can be approximated using
an ellipsoid. We use the size of this ellipsoid to quantify
the potential impact. When the intersection between the
reachable set and the set of unsafe states is non-empty, it
is also possible to compute the time-to-unsafe metric. This
metric estimates the shortest time that an attacker would
need to cause damage before being detected. This time-
to-unsafe metric is fundamentally different from proximity-
based metrics previously proposed in the literature [8, 7].
These metrics rely on the raw estimate of the state of the
system to compute an euclidean distance to unsafe states, and
are used to perform safety monitoring. Instead, our time-to-
unsafe metric relies on reachable sets induced by a potential
stealthy attack. As such, we account for the fact that the given
estimate may not represent the real state of the system.

Finally, we evaluate the proposed algorithm using the
Tennessee-Eastman process (TEP) as a case study. We first
validate our algorithm through extensive simulations aimed
at assessing its ability to warn about potential damage due
to a stealthy attack. Second, we compare it to existing
online safety monitoring techniques for attacks, namely
those that only rely on proximity-based metrics using raw
state estimates. We show through simulation scenarios that
under “low-and-slow” stealthy attacks, existing techniques
will not convey the security and safety situation accurately.
Conversely, our reliance on reachable sets in our approach
allows for early warnings to be provided to operators before
a stealthy attack can cause damage. Finally, we demonstrate
the suitability of the algorithm to real-time applications.
Specifically, we show that safety checking takes place in a
time frame that is shorter than the system’s sampling period,
and that the algorithm scales well with the complexity of
safety constraints and the desired length of time horizon for
online prediction. We have applied our monitoring approach
within a framework for physics-based early warnings for
stealthy attacks [3].

The rest of this paper is organised as follows: Section II
discusses related work, Section III provides an overview of
our approach, Section IV describes the adopted modelling
framework, Section V details the proposed algorithm, and

Section VI presents numerical simulation results. Finally,
Section VII concludes the paper.

II. RELATED WORK

While there exists a large body of work on model-based
attack detection in control systems [15], to the best of our
knowledge, approaches tackling the problem of online safety
monitoring for ICS under stealthy attacks are scarce. In
model-based attack detection, we ask whether the current
observations of the system are consistent with a mathematical
model, up to a certain degree of uncertainty. Model-based
attack detection is a reactive approach to security where
the occurrence of an anomaly triggers an alert. With online
safety monitoring under potential attacks, we ask whether
the current (estimated) state of the system can be taken
by an attack to a target state that violates at least one
safety constraint. Online safety monitoring is a proactive
and a predictive approach to safety/security that may help
in guiding the selection of preemptive safety measures, such
as switching to a safe and secure redundant controller [9].

Kwon et al. [25, 26] have proposed a recursive method to
compute exact reachable sets under stealthy attacks online.
While this method is computationally efficient, it uses large
recursive matrices, which can make an extensive use of
resources. Furthermore, safety checking in this work relies on
the characterisation of a time-varying safe set as an ellipsoid
centred at the current state. Although this is suitable for
the Unmanned Aerial Vehicle (UAV) application used by
the authors, it may not be applicable in chemical process
control, where unsafe operating levels are usually fixed limits
imposed on physical state variables. In contrast, the bulk of
the computation required for our method is performed offline,
resulting in symbolic sets with a lightweight characterisation
when instantiated online. Furthermore, we consider more
practical time-invariant unsafe sets which can be interpreted
geometrically as a union of half-spaces.

Existing online monitoring schemes [13, 7, 11, 8] rely on
a notion of proximity to a predefined set of unsafe/critical
states. This line of work does not consider formal safety
guarantees, but it uses metrics reflecting the proximity of
the system to unsafe states as a way to either determine the
level of safety or to detect attacks. For example, Carcano and
Coletta [7, 11] compute the minimum Euclidean distance
from current states to the unsafe operating region. Castel-
lanos and Zhou [8] extend this notion further by computing
an approximate “time-to-critical-states” metric. However,
these approaches rely only on raw sensor values and do
not consider the effect of stealthy attacks. For example,
intelligently crafted sensor attacks introduce “low-and-slow”
modifications to sensor values, which may eventually not
reflect the real state of the system. In our work, instead of
using raw sensor values, we rely on reachable sets under
stealthy attacks which bound — with a certain confidence
level — the actual state of the system.

Other related work [19, 31, 45, 33, 44] has proposed tech-
niques to quantify the worst-case impact of potential stealthy
attacks. To the best of our knowledge, these techniques are



developed with the objective of performing risk assessment
offline. For example, Milosevic et al. [32] propose a frame-
work for security measure allocation given certain impact
and attack complexity metrics. Murguia et al. [37] use the
volume of ellipsoidal approximations of reachable sets under
stealthy attacks as a measure of impact. In our work, we
quantify in real-time the potential impact of a stealthy attack
based on the size of the intersection of the reachable set
with the set of unsafe states. Using this intersection, instead
of the entire reachable set, gives a more precise estimate
of potential impact. This is made possible by using the
geometric properties of the sets’ representations.

Finally, our approach is inspired by recent work on real-
time reachability analysis [2, 9, 43], notably in the context of
real-time monitoring for simplex control architectures [21].
Similarly to the algorithms proposed in this paper, a few
works in this area consider pre-computing reachable sets
offline before instantiating them online, in order to perform
safety checking efficiently. However, to the best of our
knowledge, previous work in this context did not consider
safety checking in the presence of stealthy attacks seeking
to cause damage to a safety-critical system.

III. PREDICTIVE ONLINE MONITORING APPROACH

In this section, we describe the online monitoring problem
tackled in this paper and outline the proposed approach. We
also describe the main idea behind existing work on online
safety monitoring under attacks. We consider this body of
work as a baseline against which we compare our approach.

A. Online Monitoring Problem

This paper considers the online monitoring framework
depicted in Figure 1. The objective of our approach is to
check in real-time whether a potential undetected attack
can cause damage to the system before being detected. In
other words, given the current physical state estimate x̂(t),
the online monitoring problem asks whether there exists a
stealthy false data injection attack on sensors that can bring
the system into an unsafe state over the next T time instants.

If this check returns a negative result, then operators can
be reassured that even if an intrusion is present, the alleged
attacker may not be able to cause any damage without
being detected. Otherwise, the check can serve as an early
warning and can prompt operators to take preemptive safety
or security measures. Such additional measures are however
beyond the scope of the current work.

B. Outline of the Proposed Approach

The proposed approach, shown in Figure 1, is composed
of two main steps:
• Offline Initialisation: this step consists of computing

symbolic reachable sets under a stealthy false data
injection attack in terms of the state estimate based on
a model of the system and attack. This is possible by
considering the evolution of the state estimation error
under a stealthy attack instead of the physical state
itself. As a result, we express the reachable set of errors

in terms of the actual state estimate. This allows us to
perform the bulk of the computation offline, leading to
more efficient real-time safety checking.

• Online Monitoring: at runtime, the proposed monitor
takes as input the current physical state estimate and
the state of the controller and predicts the value of the
state up to T time steps into the future. We assume that
this prediction can be done using an identified physical
model of the system, with T chosen to maintain an
acceptable degradation in the confidence level of the
predicted state. We then instantiate the precomputed
symbolic reachable set at each predicted state value,
and perform an emptiness check of its intersection
with a predefined set of unsafe states. The prediction
stops when a non-empty intersection is encountered, or
when T is exhausted. Furthermore, we compute two
security metrics when the intersection is non-empty: (i)
potential impact of the attack, and (ii) time-to-unsafe
states reflecting the approximate time that a potential
attack would need to cause damage. These metrics are
aimed at providing operators with a better assessment
of the current safety/security situation.

In this paper, we apply this general approach to LTI
systems, where we propose the use of ellipsoids as over-
approximations of the symbolic reachable sets. Ellipsoids
have been extensively used for safety verification for con-
trol systems [23, 20]. They feature an efficient quadratic
representation in terms of the dimension of the state of
the system [29], which presents an advantage in real-time
monitoring. Furthermore, in most practical applications of
process control, unsafe operating regions can be represented
as unions of half-spaces. With reachable sets represented as
ellipsoids, safety checking reduces to checking the sign of
the distance from the ellipsoid to each of the hyperplanes
composing the unsafe set [6, 23]. As a result, real-time safety
monitoring is enabled with minimal resource utilisation.

In our application to LTI systems, we use results by
Murguia [36] in reachability analysis under stealthy attacks
to precompute a symbolic reachable set in the offline initial-
isation phase. We then use results in ellipsoidal calculus [23,
6] to design an efficient and scalable online safety monitoring
algorithm for stealthy attacks.

C. Existing Monitoring Techniques

To the best of our knowledge, existing online safety mon-
itoring techniques [13, 7, 11, 8] rely mainly on a proximity
metric to assess the safety of the system against attacks
targeting physical processes. In this paper, we compare our
approach to these techniques which all feature the same idea
detailed in the following. We provide a comparison based on
intuition in this section.

Given a set of unsafe states Su, and the current estimated
state x̂(t), existing online monitoring techniques [13, 7,
11, 8] compute a distance metric du = min d(x̂(t),Su).
The most commonly used distance metric is the Euclidean
distance, which is mainly suitable for continuous or hybrid
systems where state variables of interest assume real values.
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Fig. 1. Outline of the proposed online monitoring approach.

Given a set of thresholds τ1 > τ2 > τ3 . . ., alarms of different
levels of criticality can be raised based on the value of du.
The proximity metric can further account for the dynamics
of the system by computing a time-to-unsafe/critical states
metric, tu = du/r; where r is the approximate rate of change
of the system state over a given time period [8]. In the rest of
the paper, the term “traditional time-to-unsafe metric” refers
to tu computed using the aforementioned formula.

However, under a stealthy attack which slowly drives the
system into unsafe states to avoid detection, the real state of
the system x(t) will diverge from the estimated state. Thus,
the metric du may not provide an accurate measure of the
proximity of the system to unsafe states. Instead of relying
merely on a proximity measure based on x̂(t), our online
monitoring approach accounts for the possibility of stealthy
attacks by considering reachable sets under such attacks.
Namely, if Rx(t) is the reachable set of states under a
stealthy attack given the used anomaly detector at time t, then
x(t) ∈ Rx(t) even if x(t) 6= x̂(t). Otherwise, by definition,
the attack would be detected by the anomaly detector. If
over the next T time period, Rx(t′) ∩ Su 6= ∅ for some
t′ ∈ [t; t+ T ], then it is possible for an attacker to drive the
system into the unsafe operating region within at least t′− t
time units. As such, our safety monitoring approach relies
on emptiness checking of this intersection, instead of a mere
proximity measure. Furthermore, we consider the proximity
metric t′ − t as an additional security metric that may assist
operators in assessing the current safety/security situation.

IV. MODELLING FRAMEWORK

We apply our approach in this paper to Linear Time-
Invariant (LTI) systems. Before detailing the proposed ap-
proach, we briefly describe the layout of the system and the
attack model in this section.

A. System Layout

Consider the control system architecture in Figure 1. We
assume that the physical system can be approximated using

a Linear Time-Invariant (LTI) model:{
x(k + 1) = Ax(k) +Bū(k) + w(k)

y(k) = Cx(k) + v(k)
(1)

Where x(k) ∈ Rn is the state vector, ū(k) ∈ Rl denotes
control signals received by the system, and y(k) ∈ Rm is a
vector of sensor measurements. w(k) ∈ Rn and v(k) ∈ Rm
denote process and measurement noise, respectively, and are
assumed to follow a zero-mean Gaussian distribution with
respective covariance matrices Σ1 and Σ2. k = t/∆t ∈ N
denotes discrete time instants, where ∆t is the sampling
period and t is continuous time. A, B, and C are real, time-
invariant matrices of appropriate dimensions. The system is
assumed to be equipped with an output feedback control
loop, such that u(k) = K(ȳ − yr(k)), where u(k) denotes
control signals originally sent to the process, K is the
control law, yr(k) denotes reference output, and ȳ(k) denotes
measurements received by the controller. In this work, we
focus on sensor attacks, such that u(k) = ū(k) ∀k.

Furthermore, we assume that a subset of state variables,
denoted as critical, are grouped in the vector xc = Ccx, xc ∈
Rnc , Cc ∈ Rnc×n, and are required to remain within a
certain safe set to ensure safe operation. Let Su be the set
of unsafe states; we assume that unsafe conditions are given
as a linear combination of the critical state variables, such
that the unsafe set becomes a union of half-spaces1:

Su =

{
x(k) ∈ Rn |

nc⋃
i=0

Cc,ixi(k) ≥ bi

}
(2)

Where bi ∈ R is the ith half-space scalar, Cc,i denotes the
ith row of the matrix Cc, and xi(k) the ith element of x(k).

At a time k, given previous sensor measurements and
control actions, a Kalman filter generates an estimate of the

1This assumption is typical in several process control applications.



physical state and expected sensor measurements as follows:
x̂(k) = Ax̂(k − 1) +Bu(k − 1)

+ L(ȳ(k − 1)− Cx̂(k − 1))

ŷ(k) = Cx̂(k)

(3)

Where L denotes the Kalman gain, and x̂ and ŷ denote
estimated state and measurements, respectively.

In addition, a chi-squared anomaly detector compares
received measurements with the generated estimate through
a residual r(k) := ȳ(k) − ŷ(k). Under nominal conditions,
the residual metric has a zero-mean and a covariance ma-
trix Σ. To check for this hypothesis, a chi-squared metric,
z(k) = rT (k)Σ−1r(k) is computed and compared with a
threshold τ , such that exceeding this threshold implies a
possible anomaly and raises an alarm. The threshold τ is
designed to maintain a certain false alarm rate β such that
Pr[z(k) ≤ β] = 1− β under nominal operation, and can be
set as described by Murgia et al. [36] (Proposition 1).

B. Attacker Model

We consider in this work False Data Injection Attacks
(FDIA’s) on sensors which are masked by the system noise,
in order to drive the latter slowly to the unsafe set (2). While
different stealthy attack strategies exist in the literature, we
choose to focus on one that is feasible in practice. Hence, we
provide the following justification for our particular choice
as opposed to other possible stealthy attacks:

1) We consider FDIA’s specifically on sensors as it
has been shown both theoretically [27] and empir-
ically [45] that their stealthiness is easier to main-
tain than attacks on actuators. FDIA’s that consist
of corrupting all sensor and actuator channels, also
known as “covert” attacks [41], even though unde-
tectable, require a significant amount of resources to
be executed [42]. In practice, it may not be possible
for an attacker to have simultaneous access to all
sensor/actuator communication channels or associated
control devices. Each sensor/actuator may require dif-
ferent kinds of software/hardware tools in order to
corrupt the data they send or receive [1].

2) Replay attacks, similarly to FDIA’s, threaten the in-
tegrity of sensor measurements. Although they require
less resources to remain stealthy [42], the stealthi-
ness of replaying old sensor measurements relies on
whether these measurements could be admissible at a
given time. Therefore, the system needs to be operating
in a steady state for the replayed measurements to
be considered nominal by the anomaly detector. If
transients are experienced, then replaying old measure-
ments would reveal the attack since they no longer
correspond to the current control inputs. In this work,
we consider process control systems whereby long
transients may be experienced, thus limiting the extent
to which stealthy replay attacks may be successful.

In our attack model, we assume that the attacker has suf-
ficient resources and knowledge about the system, including

knowledge of the system dynamics and anomaly detector
properties. Let {ks, . . . , kf} denote the time period of the
attack; we model the attack as a bias imposed on sensor
measurements:

ȳ(k) := y(k) + δ(k) ∀ k ∈ {ks, . . . , kf} (4)

The attack δ(k) remains stealthy by ensuring that the false
alarm rate is maintained throughout the attack period. We
use this characterisation because anomaly detectors do raise
alarms under nominal operation. A sudden disappearance of
these alarms in practice may raise suspicion in operators
and lead them to uncover the attack before it can cause
damage [18]. Under the attack in (4), the residual is given
by: r(k) = ȳ(k) − ŷ(k) = y(k) − ŷk + δ(k). As such, the
chi-squared metric under attack is given by:

z(k) = (y(k)− ŷ(k) + δ(k))Σ−1(y(k)− ŷ(k) + δ(k)) (5)

By selecting δ(k) to be such that Pr[z(k) ≤ τ ] = 1− β, the
attacker manages to remain undetected. For example, given
K time steps, the attacker may choose to raise alarms for
βK steps so that the false alarm rate is mimicked as closely
as possible [18]2. This is possible since we assume that the
attacker knows the detector’s parameters, i.e. Σ, β and τ ,
in addition to the system and estimator outputs; i.e. y(k)
and ŷ(k) respectively. In practice, such information could
be obtained, for example, through reconnaissance attacks or
insider knowledge. In addition, while this attack strategy is
specifically designed for chi-squared detectors, most existing
work in model-based anomaly detection employs this statis-
tical change detection test [35].

We note that optimal stealthy FDIA strategies that take
advantage of system noise are studied in the literature [17,
46, 47]. However, our choice for the previous attack model
stems from its relative simplicity and practicality. In works
describing optimal stealthy attacks, the attacker requires a
deeper knowledge and understanding of the dynamics of
the system. With the adversary model that we adopt, the
attacker is required to only know the basic parameters of the
system model and its anomaly detector, which are relatively
easily obtained through a reconnaissance phase. Furthermore,
optimising the attack strategy comes at a significant compu-
tational cost for the attacker and thus limits the attack’s real-
time performance, especially if the attacker needs to adapt
to an adaptive defender. We also note that our approach
requires only the attack to mimic the false alarm rate of the
anomaly detector. As such, it can be applied to optimised
attack strategies that also take advantage of the false alarm
rate to remain stealthy.

V. PROPOSED MONITORING ALGORITHM

The proposed approach relies mainly on the offline com-
putation of the symbolic reachable set of estimation error
under the attack described in (4). This set is an ellipsoidal
over-approximation of the exact reachable set, parametrised

2Due to space limitations, the reader is referred to [18] for a more detailed
description of the distribution of the detector metric under such attack.



by the state estimate. In real-time, given the state estimate
at time k, the symbolic set is instantiated at the K-step
predicted state. Emptiness checks of its intersection with Su
are then performed. We detail both the offline and online
computations in the following sections, and we propose
online security metrics based on the computed reachable set.

A. Offline Computation of Symbolic Reachable Set

To compute the reachable set of the estimation error under
the attack in (4), we use the method described by Murgia et
al. [36]. We define this error as e(k) := x(k) − x̂(k), and
assume that at the start of an attack the estimation error is
always almost zero. The reachable set of the estimation error
under the attack in (4) is independent of the actual physical
state at the start of the attack. As such, this set serves as a
symbolic reachable set parametrised by the state estimate.

By setting e(k) = x(k) − x̂(k), and performing some
algebraic manipulations of Equation (3), the evolution of the
estimation error under an attack is given by:

e(k + 1) = Ae(k)− L(Ce(k) + v(k) + δ(k)) + w(k)

= Ae(k)− L(y(k)− ŷ(k) + δ(k)) + w(k)
(6)

Since the error is partially driven by the Gaussian noise
w(k) and the attack-dependent sequence δ̄(k) = y(k) −
ŷ(k) + δ(k), using a deterministic approach will yield an
unbounded reachable set, as the support of w(k) and δ(k)
(as characterised in (4) and (5)) is infinite. This issue can
be overcome by setting a confidence level on the energy
of both of these vectors. For the attack, the sequence δ̄(k)
is already constrained to be such that Pr[z(k) ≤ τ ] =
Pr[‖Σ−1/2δ̄(k)‖2 ≤ τ ] = 1 − β where ‖.‖ denotes the L2-
norm. For the noise, let p = Pr[‖w(k)‖2 ≤ w̄]; since w(k)
follows a zero-mean Gaussian distribution, the bound w̄ on
‖w(k)‖2 can be determined using the gamma distribution for
a desired confidence p.

By using this assumption, the resulting reachable set
can be interpreted as a level set of the distribution of the
reachable error. A larger confidence level would lead to a
larger set, at the cost of being overly conservative with the
safety checking. A reasonable choice for p would be 1−β, as
the false alarm β is designed to be small. This also simplifies
the computation of the reachable set, since for p = 1 − β,
we readily have Pr[‖w(k)‖2 ≤ w̄] = Pr[z(k) ≤ τ ] under
the attack in (4). The following is based on this choice;
for a more detailed treatment of this confidence level and a
comparison of reachable sets under different choices of p, the
reader is referred to [36] and [18] due to space limitations.
Let Rpe denote the reachable set of error under the attack in
(4) and a confidence level p = 1− β:

Rpe := {e(k) ∈ Rn | e(k) is s.t. (6),

p = Pr[‖w(k)‖2 ≤ w̄] = 1− β}
(7)

While computing Rpe is intractable, it is possible to over-
approximate the set using an ellipsoid in Rn, given by:

Rpe ⊆ Epe = {e(k) | eT (k)Π−1e(k) ≤ 1} (8)

Algorithm 1 Offline Symbolic Reachable Set Computation
INPUTS: (A,L,Σ, τ, w̄,∆h); 0 < ∆h < 1
OUTPUT: Reachable set shape matrix Π

1: b← ∆h;
2: SolutionList ←EmptyList();
3: while b < 1 do
. Solve the programme in (9) for the current value of b

4: SolveSemiDefiniteProgramme(A,L,Σ, τ, w̄, b);
5: SolutionList.append(CurrentSolution);
6: b← b+ ∆h;
7: end while
8: BestShapeMatrix ← MinObjectiveValue(SolutionList);
9: return BestShapeMatrix;

Where the positive definite matrix Π is the ellipsoid’s
shape matrix. Letting P = Π−1, the minimum volume
ellipsoid containing the set Rpe can be obtained by solving
the following semi-definite programme [36]:

P = arg min− log detP
s.t.
P > 0 ; Q ≥ 0

(9)

Where:

Q =


bP ATP 0 0
PA P P −PLΣ1/2

0 P 1−b
τ+w̄ I 0

0 −Σ1/2LTP 0 1−b
τ+w̄ I

 ,
b ∈ (0, 1)

(10)

Note that while b is an optimisation variable, it is necessary
to fix it to ensure the convexity of the programme. A grid
search can then be performed over the interval (0, 1) to find
the optimal shape matrix corresponding to the minimum-
volume ellipsoid.

Given the shape matrix Π = P−1, and replacing e(k) by
its definition, we obtain a symbolic ellipsoidal approximation
Epx(k) of the reachable set Rpx(k) of the actual system state
x(k), parametrised by the current state estimate x̂(k):

Rpx(k) ⊆ Epx(k) =

{x(k) ∈ Rn | (x(k)− x̂(k))
T
Π−1(x(k)− x̂(k)) ≤ 1}

(11)
Algorithm 1 summarizes the offline steps to obtain Epx(k).

Given the system matrix A, the Kalman gain L, the residual
covariance matrix Σ, the anomaly detector’s threshold τ and
the confidence bound w̄, the algorithm performs a grid search
over (0, 1) by partitioning the interval into segments of length
∆h. The choice of ∆h will depend on the desired tightness
of the ellipsoidal approximation given the computational
resources available. Note that this step only needs to be
performed offline once, and only the matrix Π needs to be
stored to instantiate Epx(k) online given a state estimate x̂(k).



Algorithm 2 Online Safety Checking
INPUTS: (K,Π, x̂(k), ControllerState, UnsafeSet)
OUTPUT: true if the system is safe under a potential
stealthy attack; false otherwise

1: x̂p ← x̂(k)
2: for all l ∈ {0, 1, . . . ,K} do
3: ReachEll ←Ellipsoid(x̂p,Π);
4: for all Hyperplane ⊂ UnsafeSet do
5: DistToUnsafe ← dist(ReachEll,Hyperplane);
6: if DistToUnsafe ≤ 0 then
7: return false;
8: end if
9: end for

10: x̂p ← PredictControlFlow(x̂p,ControlState);
11: end for
12: return true;

B. Online Safety Checks

Algorithm 2 outlines the steps needed to perform online
safety checks. Given the current state estimate x̂(k) and the
state of the controller, we estimate the state of the system
for K time steps into the future using the identified model of
the plant. At each time step l ∈ {0, . . . ,K}, we instantiate
Epx(k + l) and we check whether it intersects the set Su.
The algorithm halts and reports an unsafe state when a non-
empty intersection is encountered. If the prediction horizon is
exhausted, the algorithm reports a safe state. In the following,
we detail the procedure we use to perform the emptiness
checks.

Let Hi = {x ∈ Rn | Cc,ix ≥ bi} be a half-space
representing one of the safety conditions composing the set
Su (Equation (2)). Checking whether Epx(kf ) ∩ Su = ∅
involves checking whether Epx(kf ) ∩ Hi = ∅ for each i ∈
{1, . . . , nc}. If the latter is true for all i, then the former is
also true, since Su = ∪ns

i=1Hi.
To check whether Epx(kf )∩Hi = ∅, it suffices to compute

the minimum distance from Epx(kf ) to the hyperplane that
delimits the half-space Hi. Let Hp,i = {x | Cc,ix = bi} be
such hyperplane, the minimum distance from Epx(kf ) to Hp,i
is given by [24]:

di(kf ) =
|bi − Cc,ix(kf )|−

√
x(kf )

T
Πx(kf )

‖CTc,i‖
(12)

If di(kf ) ≤ 0, then Epx(kf )∩Hi 6= ∅. Otherwise, if di(kf ) ≥
0, then the ellipsoid Epx(kf ) is either contained in Hi or does
not intersect the half-space, depending on whether its centre
x̂(kf ) belongs to Hi. However, since the state estimate is
within the safe region3, i.e. x̂(kf ) /∈ Hi, then in our case,
di(kf ) > 0 always implies that Epx(kf ) ∩Hi = ∅.

3Otherwise, it would be clear that the system is evolving to an unsafe
state and Algorithm 2 in this case would become obsolete.

C. Real-time Security Metrics

In addition to checking the emptiness of the intersection of
the reachable set with the set of unsafe states, it is possible to
derive two online security metrics. The first metric can help
operators get a better idea of the potential impact of a stealthy
false data-injection attack, while the second approximates
minimum amount of time that would be required for an
attacker to cause damage. In this section we show how
ellipsoidal methods can be used to compute such metrics
efficiently.

1) Real-Time Impact of Stealthy Attack: In the case where
Epx(kf ) ∩ Su 6= ∅, we can quantify the impact of a potential
stealthy false data-injection attack using the approximate size
of this intersection. Namely, for each half-space Hi ⊂ Su
it is possible to over-approximate Epx(kf ) ∩ Hi using a
minimum-volume ellipsoid Ei(kf ) of centre qi(kf ) ∈ Rn
and shape matrix Πi(kf ), as follows [6]:

qi(kf ) = x̂(kf )− 1 + αin

n+ 1
Πc̄i

Πi(kf ) =
n2(1− α2

i )

n2 − 1
×(

Π− 2(1 + αin)

(n+ 1)(αi + 1)
Πc̄ic̄

T
i Π

) (13)

Where c̄i = Cc,i/(Cc,iΠCTc,i)
0.5 and αi = (Cc,ix̂(kf ) −

bi)/(Cc,iΠCTc,i)
0.5. As such, we quantify the impact of a

potential stealthy false data-injection attack using the volume
of Ei(kf ). The volume of a general ellipsoid in Rn with a
shape matrix Q is given by:

vol(E) = vol[Bn]
√

detQ (14)

Where vol[Bn] and detQ denote the volume of the unit
n-ball and the determinant of the matrix Q, respectively. It
is worthwhile to note that different system dimensions may
lead to vastly different number ranges for the volume of
the intersection ellipsoid. Thus, in order to make the impact
metric more meaningful, we propose to use the ratio of the
volume of the intersection ellipsoid to that of the ellipsoid
approximating the reachable set. This guarantees that the
impact metric will fall in the range [0; 1], thus becoming
more intuitive to interpret. From (14), the impact metric
reduces to the following:

Im(k) = [ max
i=1...nc

det Πi(kf )]/det Π (15)

2) Approximate Time to Unsafe States: In the case
Epx(kf )∩Su 6= ∅ for some kf ∈ {k, . . . , k+K}, we use the
time kf as the approximate time to unsafe states metric in
our approach, namely:

Tc(k) = (kf − k)∆t,

∃kf ∈ {k, . . . , k +K} s.t. Epx(kf ) ∩ Su 6= ∅ (16)

Where ∆t is the system’s sampling period. The advantage
of using kf instead of the distance from the state estimate
x̂(k) itself is that the former approach accounts for the
fact that if an undetected attack is present, then the actual



TABLE I
SAFETY CONSTRAINTS CONSIDERED FOR THE TE CASE STUDY [12].

Output Low Limit High Limit

Reactor Pressure none 2895 kPa

Reactor Temperature none 150 ◦C

Reactor Level 11.8 m3 21.3 m3

Product Separator Level 3.3 m3 9.0 m3

Stripper Base Level 3.5 m3 6.6 m3

state x(kf ) 6= x̂(kf ) still lies within Epx(kf ) (otherwise, the
attack would be detected). This metric provides operators
with an idea of the minimum time they have to react before
a potential stealthy false data injection attack manages to
bring the system into an unsafe state.

VI. EVALUATION

In this paper, we use the Tennessee-Eastman Process
(TEP) with the control architecture designed by Ricker et
al. [39] as a case study. This benchmark process is widely
regarded as one that reflects to a high degree of accuracy a
real-life chemical process [22]. In addition, it has been used
widely to test ideas in process control [40] as well as in
model-based approaches to ICS security [14].

Namely, we used the simulation written in Simulink by
Bathelt et al. [5]. While the controllers are implemented
as Simulink blocks, the physical process itself is simulated
in continuous-time and is written in C and incorporated
into Simulink using MATLAB’s S-function blocks. Rate
transition blocks are in turn used to simulate the discrete-time
sampling of sensor measurements and actuator signals by
digital controllers, in a fashion that mimics real-life situations
in process control systems. We implemented Algorithms 1
and 2 in MATLAB, with the ellipsoidal techniques based on
the Ellipsoidal Toolbox written by Kurzhanskiy et al. [24].
We approximated the TEP process as an LTI system with
50 state variables using MATLAB’s n4sid algorithm. We
considered the safety constraints discussed by Down and
Vogel [12], shown here in Table I. We augmented the TEP
Simulink simulation with a Kalman filter and a chi-squared
anomaly detector. To initialise the online monitoring tool,
we ran Algorithm 1 to determine the reachable ellipsoid’s
shape matrix. We performed the grid search for parameter b
by dividing the interval into segments of length 0.01.

Our evaluation consists of three main parts. First, we
validated our approach by measuring true and false positives
rates using extensive simulations. Second, we compared
our approach with existing online monitoring approaches.
Finally, we assessed the performance and scalability of our
approach.

A. Validation

The objective of our approach is not to detect attacks, but
rather to perform safety checking under potential stealthy
attacks that seek to cause damage. Namely, Algorithm 2
checks whether the current state of the system can be taken

                                     

                            

 

   

   

   

   

   

   

   

   

   

 

                  

                   

                  

                   

Fig. 2. True/false positive/negative rates as a function of the length of
prediction horizon K.

to an unsafe state by a stealthy attack within the next K
time instants and cause damage before the anomaly detector
detects the attack. Thus, to evaluate our approach, we ran
several simulations of the TEP only considering different
stealthy attacks on the sensors that report values of safety
critical parameters shown in Table I. We avoided using
the true/false positive/negative rate performance metrics as
traditionally defined in the attack detection literature. Instead,
we considered a notion of true/false positives/negatives sim-
ilar to the one adopted in previous work on online safety
monitoring [10]:
• A true positive occurs when Algorithm 2 raises a

warning within K time instants before damage occurs
due to an attack, and the system reaches an unsafe state
before the anomaly detector raises an alarm.

• A true negative occurs when Algorithm 2 does not raise
any warnings within K time instants before damage oc-
curs, but the attack is detected by the anomaly detector.

• A false positive occurs when Algorithm 2 reports an
unsafe state within K time instants before damage
occurs, but the anomaly detector manages to detect the
attack before the system enters the unsafe state.

• A false negative occurs when Algorithm 2 does not raise
any warnings within K time instants before damage
occurs, even if a stealthy attack is taking place, and
the anomaly detector does not raise any alarm.

We first tested the effect of the length of the prediction
horizon K on these rates, with results presented in Figure 2.
For each value of K that we tested, we ran 500 simulations
where we picked the attacked sensors at random, and we
simulated the attack as a slowly growing bias on sensor
measurements.

We can see from Figure 2 that for a small prediction
horizon length, Algorithm 2, returns mostly negative checks,
with true and false negatives accounting for the vast majority
of predictions for K < 500. As K grows, the number of
true and false positives increases, with the false positive



                             

                   

 

   

   

   

   

   

   

   

   

   

 
 
  
 
  
 
 
   
  

  
 
  

      

       

       

       
        

        

        

Fig. 3. Receiver Operating Characteristic (ROC) curve for Algorithm 2
with the length of prediction horizon K as the third dimension.

rate increasing in a much slower manner. For K ≥ 1500,
although the rate of true positives is high, Algorithm 2 returns
a high number of false positives as well. This behaviour is
the result of the design of Algorithm 2. First, for small K,
the algorithm will likely not be exploring a sufficient number
of states where a stealthy attack would cause a violation of
safety constraints. Thus, it is expected to observe a high rate
of both false and true negatives, with true and false positive
rates remaining very low. As K increases, the algorithm
is allowed to explore more states, therefore increasing the
number of true positives. The slow parallel increase in false
positives shows that Algorithm 2 exhibits high accuracy for
intermediate values of K. However, at high values of K,
the accuracy of the predicted states is expected to decrease,
which explains the high false positive rates.

These simulations show that there exists a trade-off be-
tween how early we would like to raise warnings about
potential safety violations due to a stealthy attack and the
accuracy of Algorithm 2. These experiments can also serve
as a method to tune the choice of K. To showcase these
ideas, we have plotted in Figure 3 the Receiver Operating
Curve (ROC) for Algorithm 2, with the length of prediction
horizon K as the third dimension. We note that it exists
a “cut-off” point at K = 500 time steps where we obtain
acceptable values for the true/false positive rates (90.8% for
true positives, 4.05% for false positives). This is equivalent
to about 15 minutes ahead-of-time prediction, which is a
reasonable choice in practice for K.

For K = 500, we tested the accuracy of Algorithm 2
under different numbers of sensors being attacked at the
same time. We ran 500 simulations for each different number
of sensors being attacked. In each simulation, we picked
the attacked sensors at random, and we ran Algorithm 2
while considering the safety constraints associated with the
sensor(s) under attack (Table I). The results in Table II show
high true positive and low false positive rates in each case.

TABLE II
TRUE POSITIVE/NEGATIVE RATES VS. THE NUMBER OF SENSORS

ATTACKED AT THE SAME TIME.

Attacked Sensors 1 2 3 4 5

True Positive Rate 0.908 0.905 0.91 0.905 0.92

False Positive Rate 0.0405 0.041 0.04 0.0408 0.04

These experiments demonstrate the accuracy of Algorithm
2 with respect to all safety-critical sensors. Given the large
number of random simulations we ran, we can conclude that
Algorithm 2 can report potential safety violations due to
a stealthy attack with respect to all the safety constraints
imposed on the system.

B. Comparison with Existing Monitoring Approaches

In this section, we empirically showcase the usefulness of
our approach compared to existing monitoring approaches
described in Section III-C. To this end, we implemented an
online monitoring tool measuring the time-to-unsafe states
metric based on the euclidean distance from the current state
estimate to the set of unsafe states. We also measure the
average rate of change of the estimated system state. We
avoided a comparison based on the accuracy metrics depicted
in the previous section. This is due to the fact that the
traditional time-to-unsafe states metric relies on the selection
of different thresholds to raise alarms of different criticality.
With the lack of precise methods to select these thresholds,
it is hard to perform a meaningful quantitative comparison
between the metric proposed in this paper and the traditional
one. Therefore, we used a set of attack scenarios on safety
critical sensors to empirically demonstrate the advantages
of our approach. We particularly focus on attacks targeting
sensors with a slowly growing bias.

We chose three attack scenarios. Scenarios 1 and 2 depict
individual attacks targeting the level and pressure sensors,
respectively, of the main reactor in the TEP. Scenario 3
depicts an attack performed simultaneously on the level,
pressure, and temperature sensors of the reactor. We chose
Scenarios 1 and 2 to illustrate the typical kind of attacks
targeting safety-critical sensors, individually. We can obtain
similar results for individual attacks on other safety-critical
sensors. Scenario 3 illustrates a more dangerous coordinated
attack where all main reactor sensors in the TEP are ma-
nipulated at the same time. Again, similar results can be
obtained for other combination of sensors for safety-critical
variables listed in Table I. Figures 4, 5 and 6 present the
results obtained for each scenarios.

1) Scenario 1: In this scenario, we simulate an attack
on the reactor’s level sensor, where a growing bias on
level measurements is introduced to trick the controller into
overflowing the reactor. This simulation is shown in Figure 4
where we can see that the anomaly detector raises an alarm
almost at the moment the overflow takes place. Our impact
metric increases significantly over the period preceding the
physical damage to the reactor, and our time-to-unsafe states



            

            

  

  

   

   
 
 
 
 
  
  
 
  
 
  
  
 
 
 
  
  

 

                                    

           

                     

            

            

 

  

  

  

 
 
 
  
 
 
 

                

        

         

            

            

 

   

   

   

   

 

  
 
 
 
  
 
 
  
  

             

            

            

 

 

  

  

  

 
  

 
  
 
  

 
 
 
  
  
  
  
 
  

 
  
  
  
 
  
 
  
 
 

                     

                  

                        

                   

                    

Fig. 4. Results from Simulation Scenario 1.

Fig. 5. Results from simulation Scenario 2.

metric shows that the plant is dangerously close to damage.
Conversely, the traditional time-to-unsafe states computed
based on the estimated state alone shows a slight increase,
indicating that the plant appears to be moving away from the
unsafe operating region.

2) Scenario 2: In this scenario, we perform an attack on
the reactor’s pressure sensor. Namely, the attack is a slowly
growing bias on pressure measurements seeking to trick the
pressure controller into increasing the pressure inside the
reactor while it appears lower than its set-point. We can
see from Figure 5 that the anomaly detector fails to raise
any alarm before excessive pressure builds up in the reactor.
However, our online monitoring algorithm reports that the
plant’s operation may be unsafe in the presence of an attack
throughout this ramp-down operation, which is shown by a
non-zero impact metric. While the impact metric shows an
increase over the few hours between the start of the attack
and the damage taking place. Instead, the traditional time-
to-unsafe states metric shows the plant moving away from
unsafe states.

3) Scenario 3: In this scenario, we simulate simultaneous
attacks on the main reactor’s pressure, temperature, and level
sensors. All three attacks are slowly growing biases. Figure 6
shows that damage occurs faster in this scenario than in the
previous two, with the anomaly detector again failing to raise
any alarms. Our impact metric however shows again that the
plant’s operation may be unsafe under the attack. Instead,
the traditional time-to-unsafe states metric depicts the plant
moving away from the unsafe operating region.

These scenarios demonstrate the usefulness of our ap-
proach in the presence of stealthy attacks when compared to
simple distance-to-unsafe metrics. Relying on the traditional
distance-to-unsafe metric may relay an inaccurate idea of
the current security or safety conditions. This was especially
highlighted in Scenarios 2 and 3. While the plant appears to
drift away from the unsafe operating region, our monitoring
approach can still warn operators that an attacker is able to
damage the system without being detected.

Figure 7 shows a comparison between the time-to-unsafe
metric computed using our algorithm and the same metric
computed based on the raw estimated state. Namely, we plot
the difference (error) between the metric in each case and
the time-to-unsafe states computed based on the real state
of the system. In each scenario, we observe that the metric
based on the raw estimated state is relatively accurate before
the attack starts (the error is close to zero). However, the
error starts to grow as the stealthy attack progresses and
the real state diverges from its estimate. Conversely, as the
stealthy attack progresses, this error decreases for the time-
to-unsafe states metric computed according to our algorithm
and reaches almost zero towards the end of the attack.

This demonstrates the usefulness of our algorithm in the
worst case, where the actual state of the system significantly
diverges from the real estimate under a stealthy attack. While
this may be overly conservative when the system is not
under attack, the safety criticality of the systems we consider
justifies the need to employ a monitoring that can generate
early warnings when a dangerous stealthy attack is taking
place. Hence, the task of pre-computing reachable sets under
attacks and using them for online monitoring is well justified.

Our monitoring approach can be used as part of an
early warning system to improve situational awareness and
potentially preserve important data relevant to an investiga-
tion should a stealthy attack indeed cause damage. A full
treatment of this aspect of our approach is however deferred
for future work.

C. Performance and Scalability

We ran 100-hour simulations of the TEP to test the perfor-
mance of our approach. For performance testing purposes,
we modified the algorithm so that all the states along the
prediction horizon are visited. This represents the worst-case
scenario. We tested the ability of Algorithm 2 to scale with
respect to (i) the length of the prediction horizon (number
of steps K), and (ii) the number of safety constraints. We
performed this testing on a machine with an Intel i7-9750H
CPU clocked at 2.6 GHz and with 16 GB of RAM.



          

            

    

    

    

    

    

 
 
 
 
  
  
 
  
 
 
 
  
  
  

 
 

                                       

           

                     

          

            

  

  

  

  

  

 
 
 
 
  
  
 
 
  

  
  

 

                                    

           

                     

          

            

   

   

   

   

   

   

   

   

 
 
 
 
  
  
  

 
 
 
  
  
  
  
 
 
 
  
 
 
  

 

                                          

           

                     

          

            

 

 

  

  

  

  

  

 
 
 
  
 
 
 

                

        

         

          

            

 

   

   

   

   

 

  
 
 
 
  
 
 
  
  

             

          

            

 

 

 

 

 

 

 

 
  

 
  
 
  

 
 
 
  
  
  
  
 
  

 
  
  
  
 
  
 
  
 
                      

                  

                        

                   

      

     
      

     

      

     

Fig. 6. Results from simulation Scenario 3.
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Fig. 7. Difference (error) between time-to-unsafe metric computed based on state estimate and based on the proposed algorithm vs. the time-to-unsafe
states based on the real state of the system; (a) - Scenario 1, (b) - Scenario 2, (c) - Scenario 3.

Figure 8 shows the average time needed to perform
state prediction and safety checking (Algorithm 2) for each
number of steps, with a fixed number of safety constraints 4.
Results show that the performance of Algorithm 2 scales lin-
early with the number of steps required for state prediction.
Furthermore, at K = 1000 steps, equivalent to approximately
30 min ahead-of-time prediction, the execution time of the
safety checking algorithm is smaller than the sampling period
(1.8 sec).

In addition, we tested the ability of our algorithm to
scale with the number of safety constraints. To this end,
we fixed K at 500 steps (i.e. ≈ 15 min) and we ran
100-hour simulations for each number of safety constraints.
For the purposes of testing, we generated random half-
spaces representing safety constraints. Results are shown

4For a 100-hour simulation, this average is taken over approximately
2× 105 safety checks for a sampling period of 1.8 sec.

in Figure 9. The execution time scales linearly with the
number of safety constraints, and with 500 safety constraints
is still less than the sampling time of the system. Hence, the
proposed algorithm exhibits excellent real-time performance
in the presence of more complex safety constraints.

It is worth noting that the performance of the proposed
algorithm can be improved significantly if implemented with
a compiled language such as C++ instead of MATLAB. This
is the case in most control systems applications.

D. Implementation Challenges

Our evaluation has shown that the proposed monitoring
approach exhibits high accuracy and real-time performance.
When it comes to its implementation in practice, we note
that the approach relies on a model of the system and its
anomaly detector, which is normally available during the
control design phase. The stealthy attack model that we focus
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Fig. 8. Average execution time of the proposed scheme vs. the number of
steps for prediction.
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Fig. 9. Average execution time of the proposed scheme vs. the number of
safety constraints.

on encompasses several optimised stealthy attack strategies
proposed in previous work. This is also evident by the
ability of Algorithm 2 to exhibit high accuracy with respect
to a large number of randomised attacks in our validity
tests (Section VI-A). Finally, the attack model’s relative
practicality with respect to the attacker makes it a reliable
heuristic threat model to consider for a practical design of
monitoring algorithms.

In our approach, we require some design parameters to be
set. For Algorithm 1, a choice for the size of the partitioning
interval ∆h must be made to guide the grid search. This
parameter depends entirely on the desired tightness of the
reachable set approximation. As this is a design-time activity,
the computational cost of choosing an arbitrarily small ∆h

could be negligible when considering the increased tightness
of the resulting approximation. Our experiments have shown

that even with a choice of ∆h = 0.01, we can achieve
a high accuracy in terms of safety checks. For Algorithm
2, the design choice is to set a proper length for the
prediction horizon K. We showed that extensive randomised
simulations performed in Section VI-A can help in choosing
a value for K that achieves an acceptable trade-off between
how “early” we would like to raise warnings vs. the accuracy
of Algorithm 2 (Figures 2-3).

VII. CONCLUSION

In this paper we have presented a predictive online safety
monitoring approach for LTI systems under potential stealthy
sensor attacks. Our approach precomputes offline symbolic
reachable sets in terms of the system’s state estimate, by
considering the evolution of the estimation error under a
potential stealthy attack. Given the current state of the system
and controllers, we predict in real time the control flow
of the system for a certain umber of steps in the future.
The precomputed sets are then instantiated at the predicted
estimates. We use ellipsoidal calculus techniques to perform
emptiness checks of the intersection of the precomputed set
with a set of unsafe states. We applied the approach to the
large-scale Tennessee-Eastman process (TEP) where we vali-
dated our approach and we showed that it can perform safety
checks in a timely manner. Furthermore, we demonstrated
the improvement over existing online monitoring techniques
and we showed that the computation of reachable sets under
stealthy attacks is well justified in safety-critical applications.
In the future, we will study in more detail the uncertainty
propagation caused by the prediction of future states and its
effect on the validity of the safety checking. In addition, we
will study the possibility of extending the proposed online
monitoring approach to other attack models such as the
replay or the covert attack, particularly in situations where
it is justifiable to consider more resource-intensive stealthy
attacks from the attacker’s point of view. We also plan to
consider systems that exhibit a high degree of non-linearity
and may not be modelled in the LTI framework.
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