
Towards Using Inductive Learning to Adapt
Security Controls in Smart Homes

Kushal Ramkumar∗, Wanling Cai†, John McCarthy‡, Gavin Doherty†, Bashar Nuseibeh§, Liliana Pasquale∗
∗ Lero@University College Dublin, Ireland
† Lero@Trinity College Dublin, Ireland
‡ Lero@University College Cork, Ireland

§ The Open University, UK

Abstract—Smart home users often lack the technical expertise
required to secure their devices and could benefit from the
automated selection of security controls. In this paper, we explore
the capabilities of inductive learning to adapt the requirements
and system specification of a smart home system to identify
security controls. We present preliminary results from using
Inductive Learning via Answer Set Programming (ILASP) to
learn how to produce (1) an updated system specification that
enables benign behaviours while excluding malicious ones and
(2) updated security requirements that the system should satisfy.
We encode traces of benign and malicious execution traces from
two smart home attack datasets (CICIoT2023 and IoT-23) into
ILASP’s language. ILASP could learn updated system specifica-
tions (to prevent DoS/Botnet attacks), new security requirements
(to check for malware uploads and insecure protocols), and other
integrity constraints that could be indicators of compromise.
However, challenges remain when ILASP cannot perform the
learning due to its sensitive syntax or complex system behaviour
that lead to a large analysis space. Finally, we discuss how these
limitations can be addressed in future work.

Index Terms—Adaptive security, Inductive Learning, Security
Controls, Smart Homes

I. INTRODUCTION

Smart home devices, such as smart speakers and cameras,
have become increasingly widespread, with millions of house-
holds worldwide integrating them into their daily lives for
convenience, safety, and efficiency. However, smart homes are
an attractive target for cybercriminals due to the insecurity of
IoT devices, improper device configuration, and the significant
value of the assets that can be harmed (e.g., sensitive infor-
mation, people’s safety) [1]. New vulnerabilities and threats
are continually emerging, with cyberattacks exploiting these
weaknesses and causing significant harm.

Users often lack the technical expertise to respond to
attacks on their home networks, creating a need for automated
tools to help secure evolving smart homes [2]. Identifying
security controls in such evolving environments requires rea-
soning about newly discovered attacks and identifying updated
requirements and system specifications that could mitigate
them. Although traditional machine learning (ML) approaches
could be used to identify security controls, they often require
retraining when new attacks are discovered. Inductive learning,

This research was funded in part by Science Foundation Ireland grant
13/RC/2094 P2 with additional support from UKRI.

a subset of symbolic learning, has been used to adapt goal
models [3], evolve requirements specifications [4], and learn
network security policies from runtime traces [5]. There is an
opportunity to use inductive learning to adapt security require-
ments and specifications to protect systems from cyberattacks.

In this paper, we present preliminary results from using
Inductive Learning via Answer Set Programming (ILASP) to
learn adapted system specifications and security requirements
from smart home execution traces. ILASP learns an adapted
system specification from traces that satisfy benign behaviour
while excluding malicious ones. It learns security requirements
predominantly from the malicious traces we want to avoid. We
chose ILASP since it learns Answer Set Programs, which are
expressive [6], have ample tooling support for model checking
and logic-based learning [7], and are suitable for representing
partial models in dynamic environments. To represent the exe-
cution traces, we considered the benign behaviour and anoma-
lies (malicious behaviour) detected in the CICIoT2023 [8]
and IoT-23 [9] smart home attack data sets. An Answer
Set Programming (ASP) representation of these benign and
malicious behaviours is available publicly [10]. We encode
it into ILASP’s language to learn updated predicates (system
specification) and integrity constraints (security requirements)
that we use to adapt a pre-defined smart home model and
manually derive the security controls from the adapted model.

Our primary contribution lies in enabling adaptive system
modelling by learning an updated system specification and
security requirements and deriving security controls. Using
ILASP, we learned secure system predicates (updated specifi-
cation) to counteract attacks like Denial of Service (DoS) and
Botnets. Additionally, we identified new security requirements,
including integrity constraints preventing malware uploads and
using insecure protocols. We also identified other integrity
constraints that could serve as indicators of compromise (IOC)
requiring further analysis, such as network packets looping
back to a device. However, we faced challenges with learning
system specification or security requirements from complex
system behaviour, which potentially created a large analysis
space for ILASP. The tool’s highly sensitive syntax also re-
quired careful consideration in the specification of the system
behaviour since it could lead to non-termination. Finally, we
discuss how these limitations can be addressed in future work.



Data set of
execution traces
encoded in ASP

notation

Benign Traffic
communicate(alexaechodot,trusted_endpoint,

https,within_limit).

Malicious Traffic
% Botnet Actuation Phase

communicate(alexaechodot,malicious_endpoint,
https,within_limit).

...

POSITIVE EXAMPLE
#pos({}, {}, { endpoints(trusted_endpoint,

alexaechodot). protocol(https).
packet_rate(within_limit). available(alexaechodot).}).

NEGATIVE EXAMPLE
#neg({}, {}, { endpoints(malicious_endpoint,

alexaechodot). protocol(https).
packet_rate(within_limit).

available(alexaechodot).}).

1 ENCODE EXECUTION TRACES INTO ILASP
NOTATION

...

LEARN UPDATED MODEL USING ILASP

PRE-DEFINED MODEL

:- endpoints(malicious_endpoint,V1).

2

% Types
type(device).

...
% Assets and Protocols
device(alexaechodot).
protocols(http; https; icmp).
packet_rate(normal; exceeds_limit).

...
% Network Communication
{ communicate(S, D, P, F) : endpoints(S, D), endpoint(S),
endpoint(D), protocols(P), packet_rate(F) } = 1.

% Security Requirement

DERIVE SECURITY CONTROL
3

Introduce IP reputation checks

Fig. 1: Overview of the technique

II. RELATED WORK

The aim of our work to dynamically identify security
controls to mitigate new attacks aligns with existing research
on adaptive security [11]–[13]. Landuyt et al. [14] suggest
evolving the representation of threats based on the automated
derivation of changing architectural system models from run-
time and operational system artefacts. Calo et al. [15] propose
an approach to dynamically generate access control policies
when the environment changes, assuming that constraints asso-
ciated with the resources to be accessed are satisfied. Although
relevant, this work has not provided a systematic solution
to identify security controls in response to new attacks [13].
Similarly to previous work on security requirements engineer-
ing [16]–[22], we reason about the satisfaction of the system
security requirements to identify relevant security controls.
However, this work typically requires a complete system
model and has not been designed to support requirements
evolution. Other approaches [23], [24] trigger requirements
evolution only considering pre-defined rules when security
properties are violated.

To address new attacks, previous work has suggested
adapting the system specification and security requirements
from execution traces indicating the presence of new at-
tacks [25]. Inductive learning can address this need by learning
logic-based system representations from examples (execution
traces), supporting model adaptation. For example, a goal-
oriented requirements modelling framework has been pro-
posed to adapt requirements when environment conditions
change [3]. Employing counterexample-guided learning gen-
erates goal model adaptations while ensuring correctness and
minimal changes. However, the method focuses on goal re-
finement structures and static adaptations during development
time, limiting its application to dynamic or runtime scenarios
where adaptive systems require ongoing learning and revi-
sion of specifications. A probabilistic rule-learning technique,
NoMPRoL, has been developed to revise behavioural models
in adaptive systems based on execution traces [4]. This method
effectively integrates observations to improve domain models
and generate reactive plans. However, the approach assumes

static feedback cycles and primarily focuses on probabilistic
transitions, with limited emphasis on symbolic explainability.
Recent work highlights the benefits of symbolic learning
for anomaly detection, emphasising explainability and effi-
ciency [5]. This work dynamically learns security policies
from data while adapting to distribution shifts. However, this
work centres on learning high-level security policies and does
not extend to nuanced system specifications or requirements
for diverse attack scenarios.

III. ADAPTIVE SECURITY WITH INDUCTIVE LEARNING

As shown in Fig. 1, our approach uses smart home execution
traces extracted from the CICIoT2023 [8] and IoT-23 [9]
data sets [10], which include the most commonly performed
against smart homes using real and simulated devices [26].
The malicious traces were identified using anomaly detection
algorithms (e.g., isolation forest) on the datasets, and were en-
coded using the ASP notation [26]. The traces are categorised
into two types: benign and malicious traffic. The benign traffic
traces represent typical network traffic, such as communication
with trusted endpoints using standard protocols. The malicious
traces capture potentially malicious activity, such as botnet
actuation phases involving communication with malicious
endpoints.

To conduct our study, we first convert the ASP-encoded
traces into a format compatible with ILASP (Section III-B).
Second, we use the ILASP framework to learn an adapted
logic-based model from the converted traces (Section III-C).
In Fig. 1, the learned output specifies rules that differentiate
benign from malicious traffic, such as identifying endpoints
associated with malicious activity. We then update a pre-
defined smart home model (discussed in Section III-A) with
the newly learned model. For example, we can learn a new
security requirement that forbids network communication with
a malicious source. Finally, we derive security controls (Sec-
tion III-D) from the adapted model. For instance, we can use
IP reputation checks to identify malicious endpoints and forbid
network traffic originating from them. The steps to replicate



our results, the pre-defined model of the smart home and the
ILASP encoding, are provided in the replication package1.

A. Pre-Defined Model
The pre-defined model of a smart home is encoded in ASP

and resembles the architecture of the smart homes considered
in the CICIoT2023 and IoT-23 data sets. It represents the
asset types (devices), network communication, and one sample
security requirement. The smart home has a flat network
structure where the devices connect directly to the router
(Fig. 2). The attacks are simulated in the data sets using a
malicious actor within the home network that communicates
directly with the devices.

We define the assets of the smart home as a type in ASP,
which is then used to define the domain of objects, such as
the devices in the home. Listing 1 shows an example of an
asset (i.e. an Alexa Echo Dot device).
% Define Types
type(device).

% Devices within a smart home
device(alexaechodot).

Listing 1: System Assets

We specify the network traffic using a predicate, a function
that takes one or more arguments and evaluates to true or
false depending on whether the arguments satisfy certain
conditions. We name this predicate communicate, as shown in
Listing 2, since it models the network communication in the
smart home. The source (S) and destination (D) endpoints,
protocol (P ) used, and packet rate (F ) are the body of the
predicate, i.e, arguments that represent network traffic features.
The communicate predicate is true only when S and D are
specified as endpoints, P is of type protocol, and F is of type
packet rate.
{ communicate : endpoints(S, D), protocols(P),

packet_rate(F) } = 1.

Listing 2: Predicate to model Network Traffic

The execution traces are specified by replacing the predi-
cate’s arguments with constants. Listing 3 shows an example
of a communication trace from the data set used in our study.
communicate(alexaechodot,trusted_endpoint,https,

within_limit).

Listing 3: Atom depicting Benign Network Traffic

We model the system’s security requirements using integrity
constraints, i.e. rules the system must satisfy. Listing 4 shows
an example of a security requirement that ensures that a
device is not made unavailable by a Denial-of-Service (DoS)
attack. Here, unavailable is a predicate that takes a device
type as input and represents the case where the device is not
operational or no longer reachable on the network.
:- unavailable(S), device(S).

Listing 4: Integrity Constraint

1 https://github.com/kushalramkumar/adapting-security-controls-with-
inductive-learning

B. Encode Execution Traces Into ILASP Notation

To learn an updated system model, it is necessary to
encode the benign and malicious traces from the dataset into
the ILASP notation, also called mode bias. It supports the
definition of constants and variables. The constants can define
atoms, whereas the variables are used to learn predicates. We
use them to describe the system assets to ILASP. Listing 5
shows how the malicious endpoint and alexaechodot are con-
stants assigned to the variable named endpoint.
#constant(endpoint, malicious_endpoint).
#constant(endpoint, alexaechodot).

Listing 5: Constants and Variables in ILASP

We provide positive examples that represent benign traffic
to learn updated predicates. Each example consists of an
inclusion list (permitted predicates), an exclusion list (ex-
cluded predicates), and a set of execution traces in ASP
which specify additional context. Listing 3 shows a benign
trace from the dataset. In ILASP notation, this is decomposed
into endpoints (source, destination), protocol, and packet rate,
and additional contextual predicates like device availability
(Listing 6). communicate is in the inclusion list because we
would like it to appear in the head of the learned predicate.
#pos({communicate}, {}, { endpoints(trusted_endpoint

, alexaechodot). protocol(https). packet_rate(
within_limit). available(alexaechodot).}).

Listing 6: A positive example in ILASP

The example illustrates that the Alexa Echo Dot can receive
network traffic from a trusted source using HTTPS, with
packet rates within permissible limits, provided the device
is available. It also shows that the communicate predicate is
permitted under the specified context in the third argument.

The ILASP syntax of negative examples is similar to that
of positive examples. A negative behaviour to prevent is the
Alexa Echo Dot communicating with a malicious endpoint,
encoded in ASP as shown in Listing 7.
communicate(malicious_endpoint,alexaechodot,https,

within_limit). available(alexaechodot).}).

Listing 7: A negative example in ASP

Similar to creating positive traces, we decompose the predi-
cate from the data set into its arguments to convert it to ILASP
notation shown in Listing 8.
#neg({}, {}, { endpoints(malicious_endpoint,

alexaechodot). protocol(https). packet_rate(
within_limit). available(alexaechodot).}).

Listing 8: A negative example in ILASP

C. Learn Updated System Model Using ILASP

We use mode declarations to instruct ILASP on what we
want it to learn. The body declaration, modeb, indicates that
the object or predicate must appear in the body of the learned
Answer Set Program (Listing 9). The first argument of modeb
is the number of times the predicate can appear in the learned
ASP model. We set it to 1 since the endpoints only need to



Philips Hue Bridge Roomba Vacuum Cleaner Amcrest / Dlink Camera Smart PlugTechkin Light Strip Raspberry Pi

Home Router

Trusted
Endpoints

Smart Home Network

{ communicate(S, D, P, F) : endpoint(S), device(D), protocol(P),
packet_rate(F) } = 1.

Recon ReconDDoS DNS
Spoofing DoSBotnet Malware

Upload

Malicious
Actor

packet_rate(within_limit; exceeds_limit). protocol (http;https).
{ communicate(S, D, P, F) : malicious_endpoint(S), device(D), protocol(P),
packet_rate(F) } = 1.

Internet

Alexa Echo Dot

Fig. 2: Pre-Defined Model of the Smart Home

occur once. The second argument defines the composition of
the predicate to be learned, i.e., whether the predicate must
contain constants, variables, or a combination of both.

#modeb(1, endpoints(var(endpoint),var(endpoint))).
#modeb(1, endpoints(var(endpoint),const(endpoint))).
#modeb(1, endpoints(const(endpoint),var(endpoint))).

Listing 9: Body mode declaration

ILASP can be used to learn both predicates and integrity
constraints. The predicates are useful in implementing secure
system configurations (e.g., HTTPS encrypted network com-
munication in transit). In contrast, the integrity constraints
specify the security requirements that must not be violated
(e.g., no communication with malicious endpoints).

Providing sufficient positive examples in the format of
Listing 6 enabled us to learn an ASP predicate specifying
permitted communication in the smart home (Listing 10).

communicate :- endpoints(V1,V2); protocol(https);
not unavailable(V2).

Listing 10: Example of a learned predicate

This predicate differs from the one in Listing 2, where
the communicate predicate’s head contained variables. These
differences must be addressed when updating the pre-defined
model with ILASP-learned predicates. For example, knowing
V1 and V2 represent the source and destination of network
traffic, we manually extrapolate the updated predicate shown
in Listing 11. Before updating the model, conflicts between
the learned system specification, security requirements and the
existing model must be resolved, as incorrect specifications
could break model satisfiability. Although it is possible to
perform satisfiability checking to identify conflicts between
the learned integrity constraints and the pre-defined system
specification, validation of the modified security requirements
must be performed by a security expert.

{ communicate(S, D, P, F) : endpoints(S, D),
endpoint(S), endpoint(D), protocols(P), P =
https, not unavailable(D), packet_rate(F) } = 1.

Listing 11: Example of an updated predicate

Providing sufficient negative examples similar to that in
Listing 8 enabled ILASP to learn a constraint preventing
communication with a malicious endpoint. Constants like
malicious endpoint improve readability but can represent any
value (e.g., IP address or domain). This approach allows
ILASP to learn predicates and constraints by controlling the
provided examples.

We now discuss the predicates and integrity constraints that
ILASP learnt for each attack in the dataset.

Denial-of-service (DoS) and Distributed Denial-of-service
(DDoS) attacks overwhelm a target with network traffic,
rendering it unavailable [27]. A DoS attack originates from a
single source, while a DDoS attack involves multiple sources.
These attacks are detected by monitoring for unusually high
packet flow rates from malicious or unverified endpoints [28].
We represent (D)DoS traces using the endpoints, packet rate,
and unavailable predicates (Listing 12). To learn an updated
system specification that prevents such attacks, the communi-
cate predicate is included in the inclusion list.
#neg({communicate}, {}, {unavailable(alexaechodot).

endpoints(multiple_endpoints,alexaechodot).
protocol(https). packet_rate(exceeds_limit).}).

% DoS attack trace
#neg({communicate}, {}, {unavailable(amcrestcamera).

endpoints(single_endpoint,amcrestcamera).
protocol(https). packet_rate(exceeds_limit).}).

Listing 12: (D)DoS Attack Traces in ILASP

The number of endpoints (multiple endpoints) can be deter-
mined by analysing network traffic. Normal packet rate bounds
can be estimated using statistical methods (e.g., IQR method).



Botnet attacks occur in three stages: (1) the upload phase,
where malware is sent to a compromised device; (2) the
actuation phase, where the device receives commands from
a Command & Control (C&C) server; and (3) the execu-
tion phase, involving a DoS/DDoS attack with a flood of
packets [8], [9]. Upload and actuation phases are detected
by monitoring communication with known C&C servers or
malicious endpoints, modelled as shown in Listing 13. To
identify new security requirements preventing communication
with malicious endpoints, only negative traces were provided,
without any inclusion or exclusion lists. The execution phase
aligns with the (D)DoS attack described earlier.

#neg({}, {}, { endpoints(malicious_endpoint,
alexaechodot). protocol(https). packet_rate(
within_limit). available(alexaechodot).}).

#neg({}, {}, { endpoints(alexaechodot,
malicious_endpoint). protocol(https).
packet_rate(within_limit). available(
alexaechodot).}).

Listing 13: Malware Upload Attack Traces in ILASP

We label the endpoint as malicious endpoint, identified
in practice through IP reputation checkers [29] and C&C
blacklists [30]. The IoT-23 dataset includes various botnet
attacks, all characterised by the same execution phases, so
we do not distinguish between botnet types in this study.

Recon attacks involve probing a system to gather in-
formation [8], often through repeated requests (e.g., TCP
SYN) to observe responses. These attacks require devices
to remain available and responsive. The CICIoT2023 dataset
includes port scanning attacks by malicious actors with local
IP addresses, making malicious IP lists ineffective. Detection
relies on identifying spurious requests from unknown hosts,
as specified in ILASP (Listing 14).

#neg({communicate}, {}, {available(amazonplug).
endpoints(rpi,amazonplug). protocol(https).
packet_rate(exceeds_limit).}). %Recon

Listing 14: Recon Attack Traces in ILASP

We could not learn updated system specifications or security
requirements for these attacks. Despite providing (D)DoS and
upload attack traces, distinguished only by the target device’s
availability, ILASP successfully identified packet rate exceed-
ing limits as a (D)DoS attack but reported an unsatisfiable
model for Recon traces.

Table I summarises the updated system specifications and
new security requirements generated by ILASP for each attack
type. Providing sufficient traces of DoS, DDoS, and the exe-
cution phase of Botnet attacks, we learned two updated system
specifications that can prevent these attacks. ILASP learnt the
updated Answer Set program in Row 1 using only positive
examples, showing that communication from the Alexa Echo
Dot and Amazon Plug must use HTTPS and occur only when
devices are available. ILASP inferred that the variable V 2
represents the destination device since availability is specified
in the traces only for the device, not the originating endpoint.
However, ILASP failed to learn that packet rate exceeding

the limit must be disallowed, despite such examples being
provided in the exclusion list (Listing 12). ILASP learnt the
updated Answer Set program in Row 2 using both inclusion
and exclusion lists for positive traces (Listing 15), enabling
ILASP to generate multiple constraints on predicates rather
than a single system specification as in Row 1.
% Inclusion Criteria
#pos({communicate}, {}, { endpoints(trusted_endpoint

, alexaechodot). protocol(https). packet_rate(
within_limit). available(alexaechodot).}).

...

%Exclusion Criteria
#pos({}, {communicate}, { endpoints(alexaechodot,

malicious_endpoint).}).
...

Listing 15: Providing inclusion and exclusion criteria for the
learned predicate

In these predicates, the device is identified by V 1, indicating
ILASP detected more traces where the device was the first
argument. These rows illustrate how varying example types
for the same attack yield different system specifications. Row
3 demonstrates a learned security requirement preventing
malicious endpoints from communicating with devices, based
on traces discussed in Listings 8 and 13. Row 4 shows how
secure protocols like HTTPS can be identified from traces.
ILASP learned that communication must use HTTPS, though
this is not limited to one protocol. Here usage of HTTP
indicates a misconfigured device or malware-enabling man-
in-the-middle (MitM) attacks. Row 5 extends Rows 1 and 2
by learning the requirement for devices always to be available.
This was achieved by providing negative examples of device
unavailability from DoS attack traces. Row 6 introduces a
security requirement preventing network traffic from looping
back to the same device. Such traffic may be an indicator
of compromise (IOC) requiring further analysis, potentially
due to Recon attacks, MitM attacks, or DNS/Routing Table
poisoning in the router rather than the device itself.

D. Select Security Controls
In this section, we discuss how security controls can be

chosen based on the adapted system model (Table I). We
discuss the security controls without implementing them.

Rows 1, 2, and 5 correspond to (D)DoS attacks or the
botnet execution phase. Rows 1 and 5 share the requirement
for devices to always be available. These requirements can
be satisfied through periodic availability checks (e.g., network
pings), monitoring live traffic, or user reports on device
usability [28]. The updated specification in Row 2 requires
network traffic to stay within permissible limits while ensuring
device availability. This can be achieved with packet filtering
alongside availability checks, using techniques to determine
rate limits (e.g., IQR thresholds), detect when thresholds are
exceeded, and filter packets during suspected attacks (e.g.,
via firewall rules) [31]. The security requirement in Row 3
addresses malware uploads and the botnet actuation phase,
enforcing a hard constraint against communication with mali-
cious endpoint. This can be achieved using IP blacklists [30]



Index What ILASP learned Output Answer Set Program Attack Security Controls

1 Updated Specification communicate :- endpoints(V1,V2); DoS/DDoS/Botnets (Exec) Periodic device
protocol(https); not unavailable(V2). availability checks

2 Updated Specification communicate :- packet rate(within limit). DoS/DDoS/Botnet (Exec) Configure packet rate
communicate :- endpoints(V1,V2); available(V1). thresholds

3 Security Requirement :- endpoints(malicious endpoint,V1). Botnet (C&C), Malware Upload Introduce IP
:- endpoints(V1,malicious endpoint). reputation checks

4 Security Requirement :- not protocol(https). Device Vulnerability Flag or prevent
insecure communication

5 Security Requirement :- unavailable(V1). DoS Periodic device
availability checks

6 Security Requirement :-endpoints(V1,V1).
IOC (MitM, malware, recon), Diagnosing Indicator
DoS, or Routing Table Poising of Compromise
/ ARP Spoofing

TABLE I: Updated System Specification and Security Requirements learned by ILAPS and Security Controls derived manually.

and IP reputation checkers [29] to block known botnet servers
or malicious IPs.

The security requirement in Row 4 enforces a hard con-
straint against using insecure network protocols. This can
be addressed by patching device vulnerabilities or securing
device configurations, requiring guidance from security en-
gineers. Router manufacturers often provide similar support
that also offer access to expert communities [32]. The security
requirement in Row 6 represents a constraint on the network
traffic looping back to a device. This requires checking for
an IOC by detecting packets looping back to a source within
the network [33]. Like Row 4, Row 6 also requires diagnosis
of the IOC by security engineers to determine if an attack is
underway and how it can be mitigated.

IV. DISCUSSION

Our approach is useful for dynamically learning and up-
dating system models, whether to address evolving security
requirements or respond to unknown attacks with identified
symptoms but unknown root causes. A symptom could be a
network execution trace indicating a successful DoS attack.
Our approach could be deployed in a smart home as part
of a router security solution that monitors network activity,
detects anomalies, and mitigates attacks. Although we suc-
cessfully learned updated system specifications and security
requirements for various attacks, we encountered significant
challenges in some instances.

We could not learn updated specifications or requirements
for the Recon attack. Unlike DoS, which renders the device
unavailable, Recon keeps it available. Despite providing ad-
ditional traces with varying devices and positive and negative
examples, ILASP reported the model as unsatisfiable, likely
due to relying only on four network features that were in-
sufficient to distinguish benign from anomalous behaviour. In
future work, we plan to create a testbed to simulate attack-
specific network traffic, generating traces with varied packet
rates and additional features like inter-arrival time (IAT).

We found that ILASP has a sensitive syntax and sometimes
fails to terminate. Without tool feedback, it is difficult to
determine if it requires a more detailed mode bias or additional
examples. While symbolic methods are more explainable than
traditional machine learning techniques [34], further explo-

ration is needed to (1) explain the learned ASP program and
(2) automate security control generation from the adapted
model. Large Language Models (LLMs) have been used to
explain intrusion detection alerts [35]. Thus, there is also an
opportunity to apply them to explain the outcome of symbolic
learning techniques. Although LLMs enhance explainability,
relying on them to fully automate security control generation
could risk over-reliance, as cautioned by OWASP LLM Top
10 [36].

We manually created the initial system model based on
common security requirements in smart homes [27]. In future
work, we will learn the entire model from scratch from
execution traces using neuro-symbolic approaches [5], which
have been used to learn security policies from network traces.
While we detailed how to specify mode bias to learn different
model adaptations, security engineers replicating our approach
must define mode bias to specify what to learn (e.g., system
specifications or security requirements) and how to learn (e.g.,
constants or variables in the ASP program).

V. CONCLUDING REMARKS

In this paper, we provided our preliminary results on using
inductive learning to adapt pre-defined security requirements
and system specifications from ASP-encoded execution traces.
We also showed how security controls can be derived from the
adapted model. Our approach demonstrates several key advan-
tages of leveraging inductive learning, making it a compelling
alternative to traditional machine learning techniques. From
ILASP encoding of execution traces, we learned a nuanced
system specification and security requirements. ILASP does
not require as many traces as traditional ML techniques to
update the system requirements and specification. For ex-
ample, it only needed seven examples for the DoS attacks.
In addition, symbolic learning techniques use logic-based
representations that are more readable and explainable than
traditional machine learning approaches [34], which enabled
us to derive the corresponding security controls for the system.
We discussed the challenges we faced, particularly in learning
attacks represented using complex system behaviours and
issues with ILASP’s syntax and tractability. We also provided
our plans for addressing these limitations in future work.



REFERENCES

[1] J. I. I. Araya and H. Rifa-Pous, “Anomaly-Based Cyberattacks Detection
for Smart Homes: A Systematic Literature Review,” Internet of Things,
vol. 22, p. 100792, 2023.

[2] E. Zeng, S. Mare, and F. Roesner, “End user security and privacy
concerns with smart homes,” in Thirteenth Symp. Usable Privacy and
Security (SOUPS 2017), 2017, pp. 65–80.

[3] D. Alrajeh, A. Cailliau, and A. van Lamsweerde, “Adapting requirements
models to varying environments,” in 2020 IEEE/ACM 42nd Int. Conf.
Software Engineering (ICSE), 2020, pp. 50–61.

[4] D. Sykes, D. Corapi, J. Magee, J. Kramer, A. Russo, and K. Inoue,
“Learning revised models for planning in adaptive systems,” in 2013
35th Int. Conf. Software Engineering (ICSE), 2013, pp. 63–71.

[5] A. Drozdov, M. Law, J. Lobo, A. Russo, and M. W. Don, “Online
symbolic learning of policies for explainable security,” in 2021 Third
IEEE Int. Conf. Trust, Privacy and Security in Intelligent Systems and
Applications (TPS-ISA), 2021, pp. 269–278.

[6] R. Koitz-Hristov and F. Wotawa, “Applying algorithm selection to
abductive diagnostic reasoning,” Applied Intelligence, vol. 48, pp. 3976–
3994, 2018.

[7] R. Kaminski, T. Schaub, and P. Wanko, “A tutorial on hybrid answer
set solving with clingo,” Reasoning Web. Semantic Interoperability on
the Web: 13th Int. Summer School 2017, London, UK, July 7-11, 2017,
Tutorial Lectures 13, pp. 167–203, 2017.

[8] E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, and A. A.
Ghorbani, “CICIoT2023: A real-time dataset and benchmark for large-
scale attacks in IoT environment,” Sensors, vol. 13, p. 5941, 2023.

[9] S. Garcia, A. Parmisano, and M. Jose Erquiaga, “IoT-23: A la-
beled dataset with malicious and benign IoT network traffic (Version
1.0.0),” 2020, https://www.stratosphereips.org/datasets-iot23 [Accessed:
12.06.2023].

[10] K. Ramkumar, W. Cai, J. McCarthy, G. Doherty, B. Nuseibeh,
and L. Pasquale, “More Than Zero - Diagnosing Unknown
Attacks Using Abductive Reasoning [Data set],” 2024,
https://doi.org/10.5281/zenodo.14380178 [Accessed: 11.12.2024].

[11] M. Salehie, L. Pasquale, I. Omoronyia, R. Ali, and B. Nuseibeh,
“Requirements-driven adaptive security: Protecting variable assets at
runtime,” in 2012 20th IEEE Int. Requirements Engineering Conf. (RE),
2012, pp. 111–120.

[12] E. Yuan, N. Esfahani, and S. Malek, “A Systematic Survey of Self-
Protecting Software Systems,” ACM Trans. Autonomous and Adaptive
Systems (TAAS), vol. 8, no. 4, pp. 1–41, 2014.

[13] G. Tziakouris, R. Bahsoon, and M. A. Babar, “A Survey on Self-
Adaptive Security for Large-Scale Open Environments,” ACM Comput-
ing Surveys (CSUR), vol. 51, no. 5, pp. 1–42, 2018.

[14] D. van Landuyt, L. Pasquale, L. Sion, and W. Joosen, “Threat Modeling
at Run Time: The Case for Reflective and Adaptive Threat Management
(NIER track),” in 2021 Int. Symp. on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), 2021, pp. 203–209.

[15] S. Calo, D. Verma, S. Chakraborty, E. Bertino, E. Lupu, and G. Cirin-
cione, “Self-Generation of Access Control Policies,” in Proc. 23nd ACM
Symp. Access Control Models and Technologies, 2018, pp. 39–47.

[16] L. Liu, E. Yu, and J. Mylopoulos, “Security and Privacy Requirements
Analysis within a Social Setting,” in Proc. 11th IEEE Int. Requirements
Engineering Conf., 2003., 2003, pp. 151–161.

[17] A. Van Lamsweerde, “Elaborating Security Requirements by Construc-
tion of Intentional Anti-Models,” in Proc. 26th Int. Conf. Software
Engineering. IEEE, 2004, pp. 148–157.

[18] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone, “Modeling
Security Requirements through Ownership, Permission and Delegation,”
in Proc. of the 13th Int. Conf. on Req. Eng., 2005, pp. 167–176.

[19] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh, “Security Requirements
Engineering: A Framework for Representation and Analysis,” IEEE
Trans. Software Engineering, vol. 34, pp. 133–153, 2008.

[20] Y. Yu, V. N. Franqueira, T. T. Tun, R. J. Wieringa, and B. Nuseibeh,
“Automated Analysis of Security Requirements through Risk-Based
Argumentation,” Journal of Sys. and Softw., vol. 106, pp. 102–116, 2015.

[21] L. Pasquale, P. Spoletini, M. Salehie, L. Cavallaro, and B. Nuseibeh,
“Automating Trade-off Analysis of Security Requirements,” Require-
ments Engineering, vol. 21, pp. 481–504, 2016.

[22] S. Türpe, “The Trouble with Security Requirements,” in Proc. of the
25th Int. Requirement Engineering Conf., 2017, pp. 122–133.

[23] G. Bergmann, F. Massacci, F. Paci, T. T. Tun, D. Varró, and Y. Yu, “A
Tool for Managing Evolving Security Requirements,” in Proc. 23rd Int.
Conf. Advanced Information Systems Engineering Forum. Springer,
2011, pp. 49–56.

[24] J. Bürger, J. Jürjens, and S. Wenzel, “Restoring security of evolving
software models using graph transformation,” Int. J. Software Tools for
Technology Transfer, vol. 17, pp. 267–289, 2015.

[25] T. T. Tun, M. Yang, A. K. Bandara, Y. Yu, A. Nhlabatsi, N. Khan,
K. M. Khan, and B. Nuseibeh, “Requirements and specifications for
adaptive security: Concepts and analysis,” in 2018 IEEE/ACM 13th Int.
Symp. Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2018, pp. 161–171.

[26] K. Ramkumar, W. Cai, J. Mccarthy, G. Doherty, B. Nuseibeh,
and L. Pasquale, “Diagnosing unknown attacks in smart
homes using abductive reasoning,” 2024. [Online]. Available:
https://arxiv.org/abs/2412.10738

[27] R. Heartfield, G. Loukas, S. Budimir, A. Bezemskij, J. R. Fontaine,
A. Filippoupolitis, and E. Roesch, “A taxonomy of cyber-physical threats
and impact in the smart home,” Computers & Security, vol. 78, pp. 398–
428, 2018.

[28] Cloudflare, “What is a DDoS attack?” 2024,
https://www.cloudflare.com/en-gb/learning/ddos/what-is-a-ddos-attack/
[Accessed: 08.12.2024].

[29] EasyDmarc, “IP/Domain Reputation Check,” 2024,
https://easydmarc.com/tools/ip-domain-reputation-check [Accessed:
18.01.2024].

[30] Amazon, “Working with trusted IP lists and threat lists,” 2024,
https://docs.aws.amazon.com/guardduty/latest/ug/guarddutyupload −
lists.html[Accessed : 08.12.2024].

[31] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, “Optimal load
distribution for the detection of vm-based ddos attacks in the cloud,”
IEEE Trans. Services Computing, vol. 13, pp. 114–129, 2017.

[32] Netgear, “Netgear Security,” 2024, https://www.netgear.com/security/
[Accessed: 09.12.2024].

[33] T. OConnor, D. Jessee, and D. Campos, “Through the spyglass: Towards
iot companion app man-in-the-middle attacks,” in Proc. 14th Cyber
Security Experimentation and Test Workshop, 2021, pp. 58–62.

[34] B. P. Bhuyan, A. Ramdane-Cherif, R. Tomar, and T. Singh, “Neuro-
symbolic artificial intelligence: a survey,” Neural Computing and Appli-
cations, pp. 1–36, 2024.

[35] M.-T. Bui, M. Boffa, R. V. Valentim, J. M. Navarro, F. Chen, X. Bao,
Z. B. Houidi, and D. Rossi, “A Systematic Comparison of Large
Language Models Performance for Intrusion Detection,” Proc. ACM
Networking, vol. 2, pp. 1–23, 2024.

[36] OWASP, “OWASP Top 10 for LLM Applications 2025,” 2024,
https://genai.owasp.org/resource/owasp-top-10-for-llm-applications-
2025/ [Accessed: 14.12.2025].


