
User-Centric Adaptation of Multi-tenant Services:
Preference-Based Analysis for Service Reconfiguration

Jesús García-Galán1, Liliana Pasquale2, Pablo Trinidad1, Antonio Ruiz-Cortés1

1University of Seville, Seville, Spain
2Lero - the Irish Software Engineering Research Centre, University of Limerick, Ireland

ABSTRACT
Multi-tenancy is a key pillar of cloud services. It allows dif-
ferent tenants to share computing resources transparently
and, at the same time, guarantees substantial cost savings
for the providers. However, from a user perspective, one of
the major drawbacks of multi-tenancy is lack of configura-
bility. Depending on the isolation degree, the same service
instance and even the same service configuration may be
shared among multiple tenants (i.e. shared multi-tenant ser-
vice). Moreover tenants usually have different - and in most
of the cases - conflicting configuration preferences. To over-
come this limitation, this paper introduces a novel approach
to support user-centric adaptation in shared multi-tenant
services. The adaptation objective aims to maximise ten-
ants’ satisfaction, even when tenants and their preferences
change during the service life-time. This paper describes
how to engineer the activities of the MAPE loop to sup-
port user-centric adaptation, and focuses on the analysis of
tenants’ preferences. In particular, we use a game theoretic
analysis to identify a service configuration that maximises
tenants’ preferences satisfaction. We illustrate and motivate
our approach by utilising a multi-tenant desktop scenario.
Obtained experimental results demonstrate the feasibility of
the proposed analysis.

Categories and Subject Descriptors
H.1.2 [Information Systems Applications]: User/Machine
Systems—Human information processing ; H.4.2 [Information
Systems Applications]: Types of Systems—Decision sup-
port

General Terms
Human Factors, Measurement

Keywords
Adaptive systems, multi-tenancy, cloud, game theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEAMS ’14, June 2 - 3, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2864-7/14/06 ...$15.00.

1. INTRODUCTION
Multi-tenancy [26] allows cloud providers to deliver the

same service to different tenants, which share physical and/or
virtual resources transparently. Depending on the adopted
cloud model, tenants can share resources at different levels,
from hardware resources (e.g., CPU, storage) to software
applications. Multi-tenancy can support different degrees of
isolation. In particular, the lower the degree of isolation, the
larger the resources and cost savings, but the smaller the
configurability. The shared multi-tenant model offers the
lowest degree of isolation, since the same service instance
is shared by all the tenants. Such model guarantees great
resources’ savings, but neglects configuration capabilities,
since even minimal configuration changes may have an im-
pact on all the users. From the user perspective, this lack
of configurability [22] is a major drawback of multi-tenancy,
especially when users’ preferences are not known in advance.
Several approaches [2, 19, 22, 29, 30] have been proposed to
support dynamic configuration management in multi-tenant
services. Nonetheless, these contributions consider an iso-
lated multi-tenant model, and they focus on deploying dif-
ferent variants of existing service instances at runtime.

Recently, the notion of social adaptation [1] has been pro-
posed to promote users as first class entities in the adap-
tation process. In particular, social adaptation considers
changes in the users’ collective judgement as a new adapta-
tion driver. However, additional challenges have to be ad-
dressed to fully support adaptation for shared multi-tenant
services. First, tenants often have different and conflicting
preferences on the possible service configurations. Second,
the adoption of a pay-as-you-go business model allows users
to join and leave a cloud service dynamically, which may af-
fect the global tenants’ preferences. Finally, the underlying
software and hardware infrastructure has a limited capacity,
which may jeopardise the satisfaction of the tenants’ pref-
erences. Some of these challenges have been addressed by
the software engineering community. In particular, require-
ments prioritisation [6, 18] and cloud infrastructure man-
agement techniques [21] provide solutions to tradeoff among
conflicting stakeholders’ preferences. However, to our knowl-
edge, none of the existing approaches provides a framework
to support user-centric adaptation in order to maximise the
satisfaction of tenants’ preferences at runtime.

Our proposal has the objective to support dynamic user-
centric adaptation in shared multi-tenant services, where
tenants’ preferences may change at runtime and may con-
flict among each other. We motivate and explain the ideas
presented in this paper by using a running example of a

multi-tenant Desktop as a Service (DaaS). Since we assume
a shared multi-tenant model, our approach is aimed to bal-
ance the tradeoff between tenants’ satisfaction and adapta-
tion transparency. On the one hand, the adaptation should
maximise the satisfaction of the tenants’ preferences, which
are expressed on the configurable elements of the system.
On the other hand, the adaptation should not be too in-
trusive i.e., the adaptation actions should have a minimal
impact on the usability of the system.

The contribution of this paper is twofold. First, we de-
fine the user-centric adaptation problem in terms of chal-
lenges and activities of the MAPE (Monitoring, Analysis,
Planning, Execution) loop necessary to support it. Second,
we propose a preference-based analysis for identifying ser-
vice configurations that maximise the tenants’ satisfaction
at runtime. We express the configuration space in terms of
an Extended Feature Model (EFM) and the tenants’ prefer-
ences by means of a preferences model [13]. The analysis
is interpreted as a coalitional problem of game theory [25].
We have implemented a prototype to perform the proposed
preferences analysis by leveraging metaheuristics for multi-
objective optimisation [20], which have been proved suitable
for EFM optimisation in existing work [16, 28, 36]. Obtained
experimental results demonstrate that our preference-based
analysis effectively maximises tenants’ preferences and can
be performed in a short time.

The rest of the paper is organised as follows. Section 2
describes the motivating scenario of a shared multi-tenant
service. Section 3 illustrates the general user-centric adap-
tation problem, and the specific preferences-based analysis.
Section 4 describes the proposed solution and Section 5 dis-
cusses experimental results. Section 6 compares our ap-
proach with relevant related work and Section 7 concludes.

2. MOTIVATING SCENARIO
Multi-tenancy is defined as “multiple users or processes

(tenants) sharing common physical or virtual computing re-
sources while remaining logically independent” [26]. Multi-
tenancy is considered an essential characteristic of cloud
computing, as it allows service providers to support elas-
tic resource provisioning and pay-as-you-go billing models.
However, such benefits often collide with security and con-
figurability concerns. The more the shared resources, the
higher the security concerns and the lower the configurabil-
ity. On the one hand, limited configurability may have an
impact on the users’ satisfaction, but, on the other hand,
granting users unlimited configurability options - on a ser-
vice which is shared by different tenants - may even have a
worse impact on users’ satisfaction. For this reason, providers
support different degrees of multi-tenancy, depending on fac-
tors like the users’ preferences, available infrastructure, and
the characteristics of the delivered service.

In this paper we have chosen the specific case of a Desk-
top as a Service (DaaS) as a motivating scenario. DaaS
provides a virtual desktop and a set of applications-as-a-
service to a single or multiple tenants. Providers like Cit-
rix1, VMWare2, and Amazon3 are increasingly offering a
wide range of DaaS solutions. Common DaaS delivery mod-
els include Virtual Desktop Infrastructure (VDI) and hosted

1http://www.citrix.com/solutions/desktop-as-a-service/
2http://www.vmware.com/products/desktop-virtualization
3http://aws.amazon.com/workspaces/

shared model. The VDI model delivers a different desktop
instance to each tenant, while the hosted shared model pro-
vides a different session of the same desktop instance to each
tenant. These two models present benefits and drawbacks.
VDI provides a more configurable DaaS with higher costs,
while, despite the hosted shared model is cheaper, it has the
limitation of not being flexible enough, since some tenants’
preferences are intentionally neglected to avoid potentially
negative side-effects on the satisfaction of the other tenants.

Table 1: Tenants’ preferences (conflicting prefer-
ences are indicated by using the same number).

Preferences

Tenant 1

- Aero preferred over Classic (1)
- Frequent Latex and Office updates
- Frequent antivirus checks (2)
- Highest firewall level (3)

Tenant 2

- Classic preferred over Aero (1)
- Indexing and defragmentation
- Medium firewall level (3)
- No OS updates

Tenant 3

- Medium frequency for office updates
- Frequent backups (4)
- Unfrequent antivirus checks (2)
- Medium firewall level (3)

Tenant 4

- Aero preferred over Classic (1)
- Frequent office updates
- Slightly frequent backups (4)
- Very frequent anvirus checks (2)
- Highest firewall level (3)

As a concrete example scenario, we consider a corporate
organisation that uses a hosted shared DaaS. For this sce-
nario we have four different tenants representing the pref-
erences of their corresponding users. Each tenant exhibits
a different set of preferences (Table 1). For example, while
tenants 2 and 3 prefer a medium firewall level, tenants 1
and 4 prefer the highest firewall level (conflict 1). Similarly,
tenant 1 prefers Aero over Classic look & feel, while tenant
2 has a completely opposite preference. The first challenge
of this scenario is to maximise the satisfaction of the ten-
ants’ preferences. Note that the complete satisfaction of all
tenants’ preferences is infeasible in most of the cases, and
therefore it is necessary to tradeoff between them.

Similarly to other cloud service models, DaaS satisfies the
requests of its tenants elastically. This means that new users
and tenants can join the system or existing ones can leave
dynamically. For example, users who belong to tenant 3
work at fixed times, while the rest of the tenants accesses
the DaaS at different times (including weekends), especially
when project deadlines are close. Similarly, the current
DaaS configuration may become sub-optimal because ten-
ants’ preferences vary during the system life-time. For ex-
ample, some users of tenant 2 may prefer a lower firewall
and antivirus level to run some tests. In all these cases, the
current users of the DaaS and their preferences must have a
direct impact on the selection of a specific service configura-
tion. Therefore, the second challenge of this scenario is to be
able to adapt the DaaS and - more in general - multi-tenant
services dynamically, when user-related changes take place.

3. PROBLEM
In this section, we provide a big picture of the user-centric

adaptation problem (Subsection 3.1). Then, we describe
the preference-based analysis, which is the specific challenge
addressed in this paper (Subsection 3.2).

M

A

P

E

Users

Infrastructure

Configuration

- Maximise users' preferences

- Satisfy
 Infrastructure
 Constraints

Candidate
Reconfiguration(s)

Current
Configuration

Re-Configuration
Strategy

- Decision Making

- Apply reconfiguration
 in the running system

- Minimise adaptation cost

Adaptation
Time

Figure 1: Used-Centric Adaptation Loop.

3.1 Engineering User-centric Adaptation
We define user-centric adaptation as the adaptation pro-

cess aimed to continue to maximise users’ satisfaction at
runtime, even when the operational environment changes.
These changes can affect users’ preferences, available system
configurations, and computational resources. As previously
proposed by Ali et al. [1], users are considered as first class
entities during runtime adaptation. In this paper adapta-
tion is performed when any event that may have an impact
on the users’ satisfaction is detected, such as new/existing
users joinining/leaving the system or modifications of users’
preferences on specific system configurations. For the spe-
cific scenario proposed in this paper, user-centric adaptation
aims to balance the tradeoff between satisfaction of tenants’
preferences on the available system configurations and the
invasiveness of the adaptation actions, which can reduce the
usability of the system. Furthermore, adaptation actions
perform a system re-configuration. The applicability of user-
centric adaptation goes further than the hosted shared DaaS
of Section 2. Even if a multi-tenant service instance is not
shared by different users (e.g. a VDI DaaS), the underly-
ing infrastructure is still shared. Therefore, user preferences
on the service may have an impact in such infrastructural
resources, leading to a similar scenario. Figure 1 depicts
the activities of the MAPE loop necessary to support user-
centric adaptation.

a) Monitoring has the objective to capture changes in
the operational environment. As shown in Figure 2, these
can include user-related changes, modifications of available
system configurations, and variations of computational re-
sources that can be provided by the underlining infrastruc-
ture. Any user, configuration or infrastructure related change
can trigger a new adaptation. User-related changes include
modifications of the users’ preferences on the available sys-
tem configurations or variations of the number of users per

tenant, which in turn can affect the global preferences of a
tenant. Moreover, user-related changes include changes of
tenants’ preferences and variations of the tenants that are
currently using the system. Monitoring users’ preferences
can be performed, for example, by asking for explicit users’
feedback [1] or mining the quality feedback from the users’
behaviour.

Additionally, modifications of the configuration space may
be due to, for example, new applications supported by the
DaaS or system updates. Infrastructure changes are re-
lated to modifications of allocated resources or changes of
the constraints on the maximum resources that can be al-
located. Note that configuration and infrastructure changes
can have an impact on how the users’ preferences can be
satisfied. However, since adaptation can affect the system
configuration provided to each tenant, continuous adapta-
tion can negatively affect the usability of the system [11].
For this reason, a new adaptation should only be applied if
the previous one was not “too recent”. To achieve this aim,
the monitoring activity must also track the last time instant
when an adaptation was performed.

b) Analysis has the objective to identify the best system
configuration(s), which optimises a set of metrics. In par-
ticular, a candidate re-configuration should maximise the
satisfaction of the users’ preferences and minimise adap-
tation costs, which can be determined by the “intrusive-
ness” of a reconfiguration (i.e. how negatively a reconfig-
uration will affect the users’ experience). For example, a
re-configuration that modifies the look and feel of a DaaS
instance is more intrusive than another one that modifies
the number of applications that can be opened at the same
time. The candidate reconfiguration(s) must also satisfy in-
frastructure constraints (e.g., maximum storage and compu-
tational resources that can be adopted). Analysis of users’
preferences can be - and has been previously [28]- performed
by using multi-objective optimisation [20] and constraints
solving analysis. However, these techniques have seldom
been applied at runtime.

c) Planning must compare candidate reconfiguration(s)
with the current one and determine if adaptation should
be performed. In case one of the candidate re-configura-
tions is more suitable than the current one, the outcome of
this activity will be an adaptation strategy, indicating how
a candidate re-configuration should be applied at runtime.
For example, changes in the application look and feel might
not be applied until specific users terminate the interaction
with the system. A re-configuration that reduces the number
of applications that can be executed at the same time, for
example to three, can only be applied if a user is running at
most three applications at the same time.

d) Execution has the objective to apply adaptation at run-
time. For example, in case of a VDI DaaS model a variant
of existing application instances should be deployed dynam-
ically, as proposed in [2, 19, 22, 29, 30]. While, for a hosted
shared DaaS model the single application instance should be
modified when possible.

3.2 Preference-based Analysis for Service Re-
configuration

As explained previously, in this paper we focus on the
analysis of tenants’ preferences to reconfigure a shared multi-
tenant service. It consists of searching for a configuration,
in the service configuration space, which satisfies tenants’

✗!
Configura*on!!

space!
!

Users!!
!!

Infrastructure!
!

Snapshott) Snapshott+1)

✓!

Figure 2: Changes in the operational environment
captured by the monitoring activity.

preferences in a close-to-optimal way. Elasticity and multi-
tenancy are two characteristics of cloud services that make
them operate under constant changes. Tenants, their pref-
erences, service infrastructure or even service configuration
space may suffer changes in a dynamic and non-predictable
way, as we described in Subsection 3.1. These changes can
trigger a service reconfiguration, whose goal is to improve
tenants’ satisfaction.

The preferences-based analysis problem is composed of a
four elements tuple

A = {C, I, U, F}

where C represents the configuration space of the service,
I represents the underlying infrastructure, U represents the
utility functions of the tenants’ preferences satisfaction and
F is a function that aggregates the utility of all the tenants
for a specific configuration. C, I and U may change at
runtime.

Given a time instant t with a running configuration ct−1,
we define the analysis problem as the search of a ct as

F (ct) ≥ F (ct−1) + δ

where δ is a constant that measures the cost of applying
the candidate reconfiguration. Tenants’ preferences may
change, i.e. Ut−1 6= Ut, and even tenants may leave or join
the service. Therefore, in most of the cases the satisfaction
of all the tenants may decrease (Ft(ct−1) < Ft−1(ct−1)).
As a starting point, we consider a simplified version of the
analysis problem

A1 = {C,U, F}

where we assume that the infrastruture can support any ser-
vice configuration. In other words, C and I are not affected
by any changes, and δ is always equal to 0. Then the only
triggers of the analysis are changes in the tenants and/or
their preferences.

4. SOLUTION
This section presents our approach for the preference-

based analysis. As shown in Figure 3, we consider potential

Configuration space

Preference-based

Analysis
Users’ preferences

✓!
✗!

…"

✓!
3.0!
LOW!

Candidate
(re)configuration

✓!
✗!

…"

3.0!
MED!

✗!

Current configuration

Figure 3: Inputs and outputs of the Preference-
based Analysis.

service configurations (i.e. configuration space), users’ pref-
erences expressed on the configurable service elements, and
the current configuration of the service as inputs of our anal-
ysis. The configuration space is expressed as an EFM (Sub-
section 4.1), and the tenants’ preferences are represented
by using a preference model (Subsection 4.2). We interpret
the analysis as a coalitional game of game theory (Subsec-
tion 4.3), which is solved conceptually by the Nash Bargain-
ing Solution [25] and practically by using multi-objective
optimization.

For this paper we made the assumption that every ten-
ant groups different users who share common preferences.
The clustering of the users’ preferences into different ten-
ants is performed by an external process, which is out of the
scope of this work. The preferences are obtained during the
monitoring phase and are translated into preferences terms,
described in Section 4.2.

4.1 Configuration Space
The configuration space of the DaaS scenario is repre-

sented as an Extended Feature Model (EFM). An EFM rep-
resents the configuration space of a software system in terms
of functional features and non-functional attributes. As
shown in Figure 4, available configuration options associated
with our DaaS example are Look & Feel, Security, Mainte-
nance, and Updates.

Functional features are graphically represented as nodes
and are connected among them hierarchically. They can
simply be selected or not. Examples of functional features
are Aero and Classic for Look & Feel. Feature relationships
are individual - mandatory (black circle) and optional (white
circle) - or grouped. For grouped relationships, a cardinality
determines how many children features can be selected. For
example, Security is mandatory, while Firewall, Encryption
and Antivirus are optional features. Look & Feel presents a
grouped relationship with a [1,1] cardinality (i.e. only one
sub-feature among Aero and Classic can be selected). While
for application updates (AppUpdate) at least one feature
among eclipse, office, and java updates should be selected.

Non-functional attributes are formally represented as vari-
ables with a domain. An attribute is linked to a feature, and
optionally to other attributes by means of constraints. An
example of a feature attribute can be the security level of the
firewall that can assume four possible values (Low, Medium,
High, and Complete). The constraint shown in Figure 4 im-

WindowsDaaS+

Security+

An3virus+ Firewall+

Encryp3on+

Maintenance+

Indexing+

Defragmenter+

Backup+

OSUpdt+

Updates+

AppUpdates+

JavaUpdt+EclipseUpdt+

OfficeUpdt+

Look&Feel+

Aero+
Classic+

1..1+

Constraints)
Firewall.level+=+“complete”++IMPLIES+NOT+AppUpdates+

1..3+

1..3+

level:+{low,+
medium,+high,+
complete}+

frequency:+
[0,7]+days+per+
week+

period:+
{daily,weekly,
monthly}+

Figure 4: DaaS configuration space expressed as an Extended Feature Model

plies that, when the firewall security level is Complete, fea-
ture application updates (AppUpdates) should be disabled.

We decided to represent the configuration space as an
EFM for several reasons. First, EFMs - in particular -
and Variability Models - in general - have been extensively
used to represent variability-intensive systems for academic
and industrial purposes [5]. Second, an EFM can express
a large configuration space in a compact way, which is also
amenable to a graphical representation. For instance, if we
consider both features and attributes, the model shown in
Figure 4 represents 1.053.184 different configurations4. Fi-
nally, a wide catalog of analysis operations [3] is also avail-
able to extract information from these models and, there-
fore, we can apply or tailor existing analysis operations to
our purposes.

4.2 Tenants’ Preferences
To express tenants’ preferences we assume that the ten-

ants agree on the hard requirements of the service. For ex-
ample, in our case they agree on the operating system (Win-
dows) and the delivery model of the DaaS (hosted shared).
However, each tenant can express different preferences on
the configurable service elements (i.e. features and attributes
shown in Figure 4). A service cannot satisfy conflicting hard
requirements, but can provide a balance between conflicting
soft preferences.

We adapt some of the preference terms of Semantic On-
tology of User Preferences (SOUP) preference model [12] to
express the tenants’ preferences. SOUP is “a highly expres-
sive, intuitive model of user preferences”. Initially, it was de-
signed to express preferences on service discovery and rank-

4Result of Number Of Products operation [3] considering
attributes as decision variables.

ing [13]. However, it has been adapted to different scenarios,
such as resources allocation in business processes [7]. SOUP
defines preferences terms which refer to functional and non-
functional terms. In our case, functional terms are features
and non-functional terms are attributes. In particular, we
are interested in five preferences terms:

• Favorites preference term: A favorites preference de-
fines a finite set of values that constitute the desired
values of the referred element. For our case, a favorites
preferences refers to a feature we want to be selected.
For example, we may favorite feature Aero.

• Dislikes preference term: A dislikes preference defines
a set of property values that the service should not pro-
vide for the referred element. For our case, a dislikes
preference refers to a feature we want to be removed.
For example, we may dislike feature JavaUpdt.

• Highest preference term: A highest preference prefers
values as high as possible for the referred element. For
our case, a highest preference refers to an attribute
whose value we want to maximise. For example, we
may want the highest value for attribute Firewall.level.

• Lowest preference term: A lowest preference prefers
values as low as possible for the referred element. For
our case, a highest preference refers to an attribute
whose value we want to minimise. For example, we
may want the lowest value for attribute JavaUpdt.period.

• Around preference term: An around preference deter-
mines which value is better by determining the dis-
tance of each value to a concrete value provided as
an operand of this preference term. For our case, an

Table 2: Adapted SOUP preferences and mapping.
Type Preference Element Mapping Example

Qualitative
Favorites(f) Feature f = selected =⇒ pij = 1 Favorites(Aero)
Dislikes(f) Feature f = removed =⇒ pij = 1 Dislikes(JavaUpdt)

Quantitative
Highest(att) Attribute pij = value−lowerBound

upperBound−lowerBound
Highest(Firewall.level)

Lowest(att) Attribute pij = upperBound−value
upperBound−lowerBound

Lowest(JavaUpdt.period)

Around(att,d) Attribute pij = inverseDistance(value, d) Around(Antivirus.frequency, 3)

around preference defines which value we want an at-
tribute to be close to. For example, we may want at-
tribute Antivirus.frequency to be close to 3 days.

Table 2 shows the five aforementioned preference terms,
together with examples and their quantification to measure
tenants’ satisfaction. We have adapted SOUP preferences
to work with features and attributes. Initially, described
preference terms were intended to define a partial ranking
between a set of items. However, we have decided to com-
pute a satisfaction value (i.e. a real number pij ∈ [0, 1]) for
each preference. This choice allows us to compute the satis-
faction of each tenant in terms of a fitness function and to
compare different implementations of our analysis in order
to find the best one. Since features have a boolean domain,
we use both Favorites and Dislikes preferences to express
features selection. Highest, Lowest and Around preferences
are associated with attributes, although their domain should
be ordered. For Highest and Lowest preferences, the closer
the value of an attribute is to the highest or the lowest target
value, respectively, the closer to 1 the value of pij will be.
Around is the only preference that needs an extra operand,
which defines a desired value. The lower the distance of the
attribute value is to such desired value, the closer to 1 the
value of pij will be.

4.3 Analysis
The goal of the analysis is to obain the configuration that

best fits the different tenants’ preferences. Figure 3 shows
the inputs of the analysis: the service adaptation space ex-
pressed as an EFM, the tenants’ preferences and the current
configuration of the service. The output is a reconfiguration
of the service that should satisfy current tenants’ preferences
better than the previous configuration.

We interpret this analysis as a problem of game theory.
Game theory is a discipline which deals with “the study of
mathematical models of conflict and cooperation between in-
telligent rational decision-makers” [23]. A game is defined as
a three-elements tuple, Γ = (N,C,U), i ∈ N where we have
different players (N) who use several strategies (ci, ∀i ∈ N)
to maximise their fitness function (ui, ∀i ∈ N). Games can
be cooperative or non-cooperative, depending if the players
can form coalitions to accomplish better results than in an
independent way. We have considered a cooperative game
since we can achieve the maximum overall satisfaction of
tenants’ preferences. Coalitions can be ruled by communi-
cation among players, or by means of an impartial arbitra-
tor. The solution that maximises players’ fitness functions
is the Nash Bargaining Solution [24, 23], which is a Pareto
efficient solution maximising the Nash Product

∏
ui. We

consider that all the tenants make a grand coalition and
that our analysis acts as the impartial arbitrator. In par-
ticular, our analysis obtains the service configuration (Nash
Bargaining Solution) that best fits tenants’ preferences (U)
over the service adaptation space (C).

Since game theory is a general discipline, we use specific
techniques (i.e. multi-objective optimisation techniques) to
compute a solution. We translate the tenants’ preferences
to fitness functions using the mapping shown in Table 2. A
fitness function is expressed as ui =

∑
j pij . In this way,

we can measure the satisfaction of a single tenant as the
sum of the satisfaction of its preferences. Each fitness func-
tion represents a different objective of the multi-objective
optimisation problem. For a non-trivial multi-objective op-

timisation problem, it does not exist a single solution that
simultaneously optimises each objective. In this case, the
objective functions are said to be conflicting, and there ex-
ists a (possibly infinite) number of Pareto optimal solutions.
To choose a single solution, we apply a weighted Nash Prod-
uct

∏
ui ∗wi, where wi defines the weight or importance of

each tenant, in order to balance the satisfaction of the dif-
ferent tenants. We consider specifically a Normalized Nash
Product to compare different solutions from the Pareto front.

NNP =
∏ ui ∗ wi ∗ UMAX

UiMAX

This NNP is the aggregation function F defined in Sub-
section 3.2. UiMAX and UMAX are the maximum possible
vale of ui for a specific tenant and the value of ui of all the
tenants, respectively. The analysis returns the solution that
maximises this product.

Table 3 shows an analysis scenario based on the DaaS
example of Section 2, where wi is given by the number of
current users of tenant i. In the first snapshot we have 3
tenants, and the DaaS is running a configuration c1 which
provides the satisfaction ui of each tenant. Note that at
this stage the satisfaction of tenant4 is very low because its
preferences have not yet been taken into account during the
analysis. In the second snapshot we have several changes:
the preferences of tenant2 and tenant3 vary, there is a new
tenant (tenant4), and the number of users of every tenant
also change. Consequently, the utility value of the current
configuration (ui(c1)) changes accordingly, becoming sub-
optimal. Indeed the preference-based analysis is re-executed
and returns a new configuration, c2, which delivers optimal
utility values ui(c2). The most remarkable improvement is
for tenant4, whose preferences’ satisfaction increases from
0.5 to 3.5. The improvement of the global satisfaction of
tenants’ preferences is also indicated by the NNP (from 1.12
to 5.76).

5. EVALUATION
This section illustrates the implementation of the proto-

type we adopted to perform the preferences analysis. It also
describes how we conducted our experiments and discusses
obtained results.

5.1 Implementation
We implemented a prototype to perform and evaluate the

proposed users’ preferences analysis. We used jMetal - a
java based metaheuristics framework for multi-objective op-
timisation problems [10]. jMetal provides a number of algo-
rithms to solve multi-objective optimisation problems (i.e.
to compute a Pareto front of the problem). Among all the
algorithms that jMetal provides, we have chosen a genetic
algorithm, specifically FastPGA, due to its wide use for the
analysis of EFMs [16, 28]. Since we are interested in the
solution that balances and maximises tenants’ satisfaction,
we look to maximise the NNP defined in Section 4.3. In
case at least one tenant has a satisfaction value equal to 0,
NNP returns 0. If all the returned points of the Pareto front
have a NNP = 0, then we select a solution that maximises
the average satisfaction of the tenants’ preferences, where
the satisfaction of each tenant is weighted according to its
importance (weight w).

Table 3: Preferences reconfiguration scenario. Underlined preferences highlight changes, while blank lines
represent removed preferences.

Snapshot1 Snapshot2
Preferences wi ui Preferences wi ui(c1) ui(c2)

tenant1

- Favorites(Aero)

45 3

- Favorites(Aero)

49 3 2.57
- Favorites(OfficeUpdt) - Favorites(OfficeUpdt)
- Around(Backup.period,Weekly) - Around(Backup.period,Weekly)
- Lowest(Antivirus.frequency) - Lowest(Antivirus.frequency)
- Around(Firewall.level,Medium) - Around(Firewall.level,Medium)

tenant2

- Lowest(Firewall.level)

60 3.5

- Around(Firewall.level,Medium)

53 3 3- Likes(Indexing) - Likes(Indexing)
- Likes(Defragmenter) - Likes(Defragmenter)
- Dislikes(Classic)

tenant3

- Around(OfficeUpdt.period,Weekly)

31 2.5

- Around(OfficeUpdt.period,Weekly)

40 4 3.43
- Highest(Antivirus.frequency) - Highest(Antivirus.frequency)
- Highest(Firewall.level) - Likes(Defragmenter)

- Around(Backup.period,Weekly)

tenant4 0 -

- Likes(Classic)

23 0.5 3.5
- Around(JavaUpdt.period,Monthly)
- Around(Antivirus.frequency,3)
- Highest(Firewall.level)
Normalized Nash Product (108) 1.12 5.76

Tenants’ preferences are expressed using the five SOUP
preferences described in Section 4.2. The set of preferences
of each tenant defines the fitness function - objective - of
such tenant. For the adaptation space described in Sec-
tion 4.1, we have used FaMa plain text notation [33]. Since
this notion only supports integer attributes at the moment,
we model enumerated domains of the DaaS scenario as a
range. The EFM is encoded as an array of boolean (fea-
tures) and integer (attributes) variables. Since metaheuris-
tics are approximated algorithms, they may return solutions
(configurations) which violate relationships of the EFM. For
this reason, taking inspiration from the work of Sayyad et al.
[28], we set the correctness of the solution as an additional
objective. We measure the number of violated constraints
propagating each candidate solution into the EFM. Our pro-
totype also takes as input the current configuration of the
service, which is seeded among the initial population. For
the first execution, we seed a random valid configuration of
the service. This input is intended to have a double effect:
speed up the generation of valid solutions and generate some
solutions that are close to the current one and may maximise
the value of the evolved fitness functions.

5.2 Experiments
We present a preliminary experimental study to check the

feasibility of our approach. In this study, we consider sce-
narios where tenants are joining and leaving, and their pref-
erences and number of users are evolving between different
snapshots. For every snapshot, we run an analysis to recon-
figure the service. We compare the satisfaction achieved by
each reconfiguration to the satisfaction value obtained for
the previous analysis. The result is also compared to the
satisfaction of a random service configuration.

For our experiments, we define T as a set of tenants, where
each one has a number of users wi and a set of preferences
Pi. wi is defined in the integer range [WMIN ,WMAX], con-
sidering also that

∑
wi ≤WTOTAL. The number of tenants

card(T) is defined in the integer range [TMIN , TMAX], and

the number of preferences per tenant card(Pi) is defined in
the integer range [PMIN , PMAX].

Table 4: Amount of changes between two consecu-
tive snapshots t− 1 and t.

t-1 t
card(T) n ∈ {n− 1, n+ 1}

card(Pi) mi ∈ {mi − 1,mi,mi + 1}
wi wi ∈ [WMIN ,WMAX]

To run our experiments we implemented a generator that
randomly identifies a number of tenants and their prefer-
ences. Given an EFM and an integer k, this generator cre-
ates a set of different k preferences over features and at-
tributes of the EFM. Once a preference has been defined on
an element, such element is excluded for future preferences
of the same tenant to avoid contradictions. We also imple-
mented a change scenarios generator that takes as input the
set of current tenants, and returns a new set of tenants by
adding/removing new/existing ones. The change scenarios
generator also associates with each tenant an evolved set of
preferences. We define a snapshot as the state of the tenants
and their preferences for a specific time instant t.

Table 4 shows the amount of changes between two consec-
utive snapshots. For each snapshot either one tenant leaves
or a new tenant joins the service, but the rest of the tenants
may experience changes in their preferences. In particular,
if an existing tenant is affected by a change, it can be associ-
ated with a new preference or an old preference is removed.
The weight of every tenant may vary between the maximum
and minimum values. We also performed experiments by
using different configuration spaces. To achieve this aim,
we generated four additional EFMs by using BeTTy [31],
a well-known EFM generator. Table 5 shows the charac-
teristics of the considered EFMs. CTC means the number
of Cross Tree Constraints (non-hierarchical constraints) of
each model.

For each EFM model shown in Table 5, we executed 25
different tenant changes scenarios. We randomised the num-

Table 5: Characteristics of the EFMs used for our
experiments.

Configs Feats. Atts. CTC
DaaS 1 053 184 18 7 1

BeTTy1 49 483 952 20 12 6
BeTTy2 1.01 ∗ 109 20 14 6
BeTTy3 > 2.15 ∗ 109 30 21 9
BeTTy4 > 2.15 ∗ 109 30 18 9

ber of snapshots per scenario n in the integer range [5, 10].
Initial values and ranges for the remaining parameters are
as follows: Tmin = 2, Tmax = 5, Pmin = 2, Pmax = 10,
WMIN = 10 and WMAX = 80. Since each different ten-
ant implies a new objective, we select the same upper limit
(Tmax = 5) chosen in related papers on multi-objective op-
timisation for Feature Models (FMs) [28, 27]. We consider
WTOTAL = 200, since such value is close to the maximum
number of users supported by a single real hosted shared
DaaS5. For the FastPGA algorithm we configured the pa-
rameters provided by jMetal as follows: Evaluations =
25000, PopulationSize = 100, CrossoverProbability = 0.9,
and MutationProbability = 0.05.

5.3 Results and Discussion
Table 6 shows the average execution time and average

satisfaction of tenants’ preferences obtained for our experi-
ments. Execution time increases in a linear way, since we are
using the same number of FastPGA evaluations for all the
EFMs. However, the larger the EFM, the lower the average
satisfaction achieved, because the number of evaluations re-
mains constant. This highlights that we need to adapt the
number of evaluations depending on the size of the model.
We also noticed that the number of tenants does not pro-
duce any significant impact on the average execution time
and tenants’ satisfaction.

Table 6: Results of the preference-based analysis
experimental study

Time (ms) Satis. Ct > CR Ct > Ct−1

DaaS 8 497 72.79% 98.88% 63.48%
BeTTy1 12 225 64.12% 88.33% 53.33%
BeTTy2 13 701 59.76% 66.67% 38.33%
BeTTy3 18 721 59.99% 83.89% 48.89%
BeTTy4 18 400 46.87% 73.52% 30.59%

Ct > CR measures the percentage of executions identify-
ing a configuration whose satisfaction is better than a valid
configuration randomly generated (CR). For our DaaS ex-
ample, this measure reaches 98.88%. Although it decreases
for the rest of the models, we estimate that the reason of
such decrease is also the constant number of evaluations.
Figure 5 shows the average value of such measure, going
from 20% to 40% depending on the model.

Finally, Ct > Ct−1 measures the percentage of executions
that finds a reconfiguration that improves the tenants’ pref-
erences satisfaction compared to that obtained with the cur-
rent configuration. We can see how this measure generally
decreases for larger models. However, such results are af-

5http://blogs.citrix.com/2013/10/29/extreme-density-
5768-hosted-shared-desktops-in-a-single-blade-chassis/

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

0.35"

0.4"

0.45"

DaaS" BeTTy1" BeTTy2" BeTTy3" BeTTy4"

Sa
#s
fa
c#
on

)im
pr
ov
em

en
t)

Ct"vs"Ct41"

Ct"vs"Cr"

Figure 5: Comparison of the improvements achieved
by our prototype between the different EFMs

fected by the “amount of change”, i.e. the distance in terms
of tenants and preferences between two consecutive snap-
shots. The larger the amount of change, the larger the sub-
set of possible better reconfigurations. Therefore for a larger
amount of changes we expect an improvement of the satis-
faction of the tenants’ preferences between two consecutive
snapshots. However, since our prototype is only able to han-
dle a fixed number of evaluations the average improvements
in the satisfaction of the tenants’ preferences between two
consecutive snapshots is only around 7− 10%.

This is a first experimental study. In order to arrive to
stronger conclusions, we need to extend this study in several
ways:

1. Extend our current generator of changes scenarios to
explicitly measure the amount of changes produced.

2. Try a different criteria to terminate the analysis. For
example we can adapt the maximum number of eval-
uations depending on the size of the EFM, or consider
a time limit instead.

3. Compare different jMetal algorithms and parameters.
Currently we tried with FastPGA algorithm. However,
depending on the amount of change or the model size,
different algorithms or parameters may work better.

6. RELATED WORK
Users’ preferences have been recently considered as a main

adaptation trigger. In particular, social adaptation [1] pro-
poses to dynamically adapt existing software systems de-
pending on the users’ collective judgement on the way the
system should behave. This approach treats users’ feedback
as a primary driver for planning and guiding adaptation.
However, they consider different kinds of feedback, while
we focus on the users’ preferences. The scope of the deci-
sion making is also different. Our analysis searchs a specific
configuration among the whole system configuration space,
while their analysis decides between the existing alternatives
in order to fulfill a specific requirement. Song et al. [32]
present an approach to develop self-adaptive systems that
take into account end-users, who express their preferences
redressing the adaptation result. In our approach, we con-
sider an explicit preference model. Dalpiaz et al. [9] focus
on user preferences over non-functional properties as a key
driver for adaptation. However, this approach has its main

focus on pervasive infrastructures and describes preferences
through user routines.

Cloud services analysis and adaptation has been a pro-
lific research area during the last years. Caton and Rana [8]
propose an approach for cloud infrastructure provisioning
through volunteered resources. It relies on autonomic fault
management techniques to adapt resource usage. In this
direction, Maurer et al. [21] also propose an adaptive re-
source configuration for cloud infrastructure management.
In this case, they structure adaptation actions into levels,
rely on Case-Based Reasoning and a rule-based approach,
and even consider SLA-violations. Wei et al. [34] present
a similar idea, with the difference that they use a game
theoretic method based on Nash equilibria. They intend
to reach an equilibrium in the differente resources alloca-
tions. Inzinger et al. [17] focus on cloud applications instead
of the infrastructure. They propose a model-based adapta-
tion which allows users to specify application behavior, and
providers to consider data from multiple customers to offer
better adaptation decisions.

Research on Software Product Lines (SPLs) is highly re-
lated to our paper. The idea of using variability techniques
to model the adaptation space is not new. For example,
Bencomo et al. [4] propose the use of variability modelling to
define the runtime adaptation space. About multi-tenancy
and SPLs, Schroeter et al. [29, 30] use variability and SPLs
techniques to assist the configuration of multi-tenant ap-
plications. The authors identify configuration requirements
and propose a configuration process using EFMs [30], and
also define requirements and middleware for a variable multi-
tenant architecture [29]. While this work focuses on the
architectural aspects, our approach engineers MAPE loop
and proposes a preferences-based analysis. Mietzner et al.
[22] propose to use variability modelling techniques to man-
age the variability of Software as a Service (SaaS) appli-
cations and their requirements. Specifically, they use vari-
ability models to configure and deploy SaaS applications for
different tenants. However, they focus on modelling the vari-
ability and deploying different variants of a SaaS application
instance. Variability of different cloud providers has also
been analysed and modelled by Garćıa-Galán et al. [14], in
order to assist the migration of an in-house infrastructure to
the cloud. However, this approach works with hard require-
ments and ignores changes of users’ preferences.

Several research efforts have been made to investigate
multi-objective optimisation in applications characterised by
variability. Guo et al. [16] use a Genetic Algorithm to find
optimal FM configurations for a single objective and user.
Sayyad et al. [28, 27] perform multi-objective optimisation of
several large EFMs using metaheuristics techniques. How-
ever, their objective functions are fixed (minimise errors and
cost, or maximise number of features), while our fitness func-
tion depends on the specific users’ preferences. Finally, other
work has explored techniques for solving conflicts in a con-
figuration process. White et al. [35] propose a technique in
this direction that only considers a single user and a mini-
mal changes criterion. While Garćıa-Galán et al. [15] con-
sider multiple users, but after detecting the conflicts, the
users have to define explicitly the impact of every solution
on their preferences’ satisfaction.

7. CONCLUSIONS
In this paper, we have presented an approach to support

user-centric adaptation of multi-tenant services. We have
motivated user-centric adaptation by using a DaaS exam-
ple, and we have explained how to engineer the activities
of the MAPE loop necessary to support it. Although our
intention was to present an approach valid for any kind of
adaptive system, we focused our attention on multi-tenant
services and on the preference-based analysis for identify-
ing the service configuration that maximise tenants’ satis-
faction. The provided solution takes inspiration from coali-
tional game theory. We have expressed tenants’ preferences
by using SOUP preference model, while the configuration
space of the service is represented as an EFM. Obtained ex-
perimental results demonstrate that our analysis approach
effectively maximises tenants’ preferences and can be per-
formed at runtime. However, our prototype did not exhibit
good results for improving tenants’ satisfaction with very
large configuration spaces. This means that the time re-
quired to perform the analysis can increase with the number
of configurations, and, for this reason, a different analysis
technique may be required for larger configuration spaces.

As future work, firstly we propose to extend our experi-
ments to better understand the impact of the configuration
space, tenants and their evolution on the analysis results.
In particular, we can compare different heuristics and algo-
rithms to detect which one is more suitable for each spe-
cific case. Modelling more realistic multi-tenant scenarios
including a larger number of configurations will also be nec-
essary. Moreover we will extend our analysis, by including
constraints in the configuration space and in the computa-
tional resources that can be provided by the infrastructure.
The cost of applying a candidate reconfiguration will also
be taken into account to select the best one. Finally, re-
garding the whole user-centric adaptation problem, we will
address the rest of the activities of the MAPE loop. Indeed
we will investigate how to monitor users’ preferences in a
non-intrusive way and how to apply a reconfiguration on
the system at runtime. We plan to perform tests with users
in order to determine time thresholds for specific adaptation
actions.

8. ACKNOWLEDGEMENTS
Special thanks to J.A. Parejo for his advices for the ex-

perimental study, to J.M. Garcia for his explanations about
preferences modelling, and to A. Sayyad for his useful com-
ments about multi-objective optimisation in FMs.

This work was partially supported by the European Com-
mission (FEDER), the Spanish and the Andalusian R&D
programmes (grants TIN2012-32273 (TAPAS), P12-TIC- 1867
(COPAS) and TIC-5906 (THEOS)), the SFI grant 10/CE/
I1855, and the ERC Advanced Grant (ASAP) no. 291652.

9. BIBLIOGRAPHY

[1] R. Ali, C. Solis, I. Omoronyia, M. Salehie, and B. Nuseibeh.
Social Adaptation: When Software Gives Users a Voice. In
Proc. of the 7th International Conference on Evaluation of
Novel Approaches to Software Engineering, 2012.

[2] L. Baresi, S. Guinea, and L. Pasquale. Service-oriented dy-
namic software product lines. IEEE Computer, 2012.

[3] D. Benavides, S. Segura, and A. Ruiz-Cortes. Automated
analysis of feature models 20 years later: A literature review.
Information Systems, 2010.

[4] N. Bencomo, P. Sawyer, G. S. Blair, and P. Grace. Dynam-
ically adaptive systems are product lines too: Using model-
driven techniques to capture dynamic variability of adaptive
systems. In Software Product Line Conference, 2008.

[5] T. Berger, A. Wasowski, K. Czarnecki, S. She, and R. Lotufo.
A study of variability models and languages in the systems
software domain. IEEE Transactions on Software Engineer-
ing, 2013.

[6] B. Boehm, P. Bose, E. Horowitz, and M.-J. Lee. Software
requirements as negotiated win conditions. In Proceedings
of the First International Conference on Requirements En-
gineering. IEEE, 1994.

[7] C. Cabanillas, J. M. Garćıa, M. Resinas, D. Ruiz,
J. Mendling, and A. Ruiz-Cortés. Priority-based human re-
source allocation in business processes. In ICSOC, 2013.

[8] S. Caton and O. Rana. Towards autonomic management for
cloud services based upon volunteered resources. Concur-
rency and Computation: Practice and Experience, 2012.

[9] F. Dalpiaz, E. Serral, P. Valderas, P. Giorgini, and
V. Pelechano. A NFR-based framework for user-centered
adaptation. In Conceptual Modeling. 2012.

[10] J. J. Durillo and A. J. Nebro. jMetal: A Java framework
for multi-objective optimization. Advances in Engineering
Software, 2011.

[11] K. Z. Gajos, M. Czerwinski, D. S. Tan, and D. S. Weld.
Exploring the Design Space for Adaptive Graphical User In-
terfaces. In Proc. of the International Working Conference
on Advanced Visual Interfaces, pages 201–208. ACM Press,
2006.

[12] J. M. Garćıa, D. Ruiz, and A. Ruiz-Cortés. An intuitive
and formal description of preferences for semantic web ser-
vice discovery and ranking. Technical report, University of
Seville, 2012.

[13] J. M. Garćıa, M. Junghans, D. Ruiz, S. Agarwal, and
A. Ruiz-Cortés. Integrating semantic web services ranking
mechanisms using a common preference model. Knowledge-
Based Systems, 2013.

[14] J. Garćıa-Galán, O. F. Rana, P. Trinidad, and A. Ruiz-
Cortés. Migrating to the Cloud: a Software Product Line
based analysis. In 3rd International Conference on Cloud
Computing and Services Science (CLOSER), 2013.

[15] J. Garćıa-Galán, P. Trinidad, and A. Ruiz-Cortés. Multi-
user variability configuration: A game theoretic approach.
In 2013 28th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), 2013.

[16] J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A genetic
algorithm for optimized feature selection with resource con-
straints in software product lines. Journal of Systems and
Software, 2011.

[17] C. Inzinger, B. Satzger, P. Leitner, W. Hummer, and S. Dust-
dar. Model-based adaptation of cloud computing applica-
tions. In International Conference on Model-Driven Engi-
neering and Software Development, 2013.

[18] J. Karlsson and K. Ryan. A cost-value approach for priori-
tizing requirements. Software, IEEE, 1997.

[19] I. Kumara, J. Han, A. Colman, T. Nguyen, and M. Kapu-
ruge. Sharing with a Difference: Realizing Service-Based
SaaS Applications with Runtime Sharing and Variation in
Dynamic Software Product Lines. In 10th International
Conference on Services Computing, 2013.

[20] R. T. Marler and J. S. Arora. Survey of multi-objective
optimization methods for engineering. Structural and multi-
disciplinary optimization, 2004.

[21] M. Maurer, I. Brandic, and R. Sakellariou. Adaptive resource
configuration for Cloud infrastructure management. Future
Generation Computer Systems, 2013.

[22] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl. Vari-
ability modeling to support customization and deployment
of multi-tenant-aware software as a service applications. In
ICSE Workshop on Principles of Engineering Service Ori-
ented Systems, 2009.

[23] R. B. Myerson. Game theory: analysis of conflict. Harvard
University Press, 1991.

[24] J. Nash. Two person cooperative games. Defense Technical
Information Center, 1950.

[25] J. F. Nash. The bargaining problem. Econometrica: Journal
of the Econometric Society, 1950.

[26] Y. V. Natis. Gartner reference model for elasticity and mul-
titenancy. Technical report, Gartner, Inc., 2012.

[27] A. S. Sayyad, J. Ingram, T. , Menzies, and H. Ammar. Scal-
able product line configuration: A straw to break the camel’s
back. In International Conference on Automated Software
Engineering (ASE), 2013.

[28] A. S. Sayyad, T. Menzies, and H. Ammar. On the value of
user preferences in search-based software engineering: a case
study in software product lines. In International Conference
on Software Engineering, 2013.

[29] J. Schroeter, S. Cech, S. Götz, C. Wilke, and U. Aßmann.
Towards Modeling a Variable Architecture for Multi-tenant
SaaS-Applications. In International Workshop on Variabil-
ity Modelling of Software-Intensive Systems. ACM, 2012.

[30] J. Schroeter, P. Mucha, M. Muth, K. Jugel, and M. Lochau.
Dynamic configuration management of cloud-based appli-
cations. In Proceedings of the 16th International Software
Product Line Conference - Volume 2, 2012.

[31] S. Segura, J. Á.Galindo, D. Benavides, J. A. Parejo, and
A. Ruiz-Cortés. BeTTy: Benchmarking and Testing on the
Automated Analysis of Feature Models. In VaMoS, 2012.

[32] H. Song, S. Barrett, A. Clarke, and S. Clarke. Self-
adaptation with end-user preferences: Using run-time mod-
els and constraint solving. In Model-Driven Engineering
Languages and Systems. 2013.

[33] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and
A. Jimenez. FAMA Framework. In 12th Software Product
Lines Conference (SPLC), 2008.

[34] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong. A game-
theoretic method of fair resource allocation for cloud com-
puting services. The Journal of Supercomputing, 2010.

[35] J. White, D. Benavides, D. C. Schmidt, P. Trinidad,
B. Dougherty, and Ruiz-Cortes. Automated diagnosis of fea-
ture model configurations. Journal of Systems and Software,
2010.

[36] J. White, B. Dougherty, C. Thompson, and D. C. Schmidt.
ScatterD : Spatial Deployment Optimization with Hybrid
Heuristic / Evolutionary Algorithms. ACM Transactions on
Autonomous and Adaptive Systems, 2011.

