2018 ACM/IEEE 13th International Symposium on Software Engineering for Adaptive and Self-Managing Systems

Compositional Verification of Self-Adaptive Cyber-Physical

*
Systems

Aimee Borda Liliana Pasquale
Trinity College Dublin University College Dublin

Dublin, Ireland Dublin, Ireland

bordaa@tcd.ie Liliana.Pasquale@ucd.ie
Vasileios Koutavas Bashar Nuseibeh
Trinity College Dublin Open University, UK

Dublin, Ireland Lero, Ireland

Vasileios. Koutavas@scss.tcd.ie b.nuseibeh@open.ac.uk
ABSTRACT CCS CONCEPTS

Cyber-Physical Systems (CPSs) must often self-adapt to respond
to changes in their operating environment. However, using formal
verification techniques to provide assurances that critical require-
ments are satisfied can be computationally intractable due to the
large state space of self-adaptive CPSs. In this paper we propose a
novel language, Adaptive CSP, to model self-adaptive CPSs modu-
larly and provide a technique to support compositional verification
of such systems. Our technique allows system designers to iden-
tify (a subset of) the CPS components that can affect satisfaction
of given requirements, and define adaptation procedures of these
components to preserve the requirements in the face of changes
to the system’s operating environment. System designers can then
use Adaptive CSP to represent the system including potential self-
adaptation procedures. The requirements can then be verified only
against relevant components, independently from the rest of the
system, thus enabling computationally tractable verification. Our
technique enables the use of existing formal verification technology
to check requirement satisfaction. We illustrate this through the
use of FDR, a refinement checking tool. To achieve this, we provide
an adequate translation from a subset of Adaptive CSP to the lan-
guage of FDR. Our technique allows system designers to identify
alternative adaptation procedures, potentially affecting different
sets of CPS components, for each requirement, and compare them
based on correctness and optimality. We demonstrate the feasibility
of our approach using a substantive example of a smart art gallery.
Our results show that our technique reduces the computational
complexity of verifying self-adaptive CPSs and can support the
design of adaptation procedures.

“This work was supported by Science Foundation Ireland grants 13/RC/2094 (Lero)
and 15/SIRG/3501 and European Research Council Advanced Grant no. 291652 (ASAP).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SEAMS 18, May 28-29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5715-9/18/05...$15.00
https://doi.org/10.1145/3194133.3194146

« Software and its engineering — System modeling languages;
Formal software verification; « Theory of computation —
Process calculi;

ACM Reference Format:

Aimee Borda, Liliana Pasquale, Vasileios Koutavas, and Bashar Nuseibeh.
2018. Compositional Verification of Self-Adaptive Cyber-Physical Systems.
In SEAMS ’18: SEAMS ’18: 13th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems , May 28-29, 2018, Gothen-
burg, Sweden. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3194133.3194146

1 INTRODUCTION

Computational and communication capabilities are being embed-
ded into physical entities and processes, resulting in a proliferation
of Cyber-Physical Systems (CPSs), such as smart buildings, au-
tonomous vehicles and smart cities. CPSs must be resilient—that is,
they must satisfy their requirements in the face of changes in their
operating environment. To achieve this aim, CPSs may self-adapt
when their environment changes, for example by changing their
behaviour [7]. Self-adaptive CPSs increasingly support critical ser-
vices, requiring assurances to be provided to guarantee that key
requirements are indeed satisfied in the presence of self-adaptation.
However, the highly dynamic nature of self-adaptive CPSs can
make assurances hard to establish. Moreover, use of formal veri-
fication techniques to ensure satisfaction of critical requirements
can be computationally intractable due to the large state space of
self-adaptive CPSs.

Techniques for modelling self-adaptive systems using rigid mod-
ules (e.g., [21]) do not work well for CPSs where different groupings
of concurrent cyber and physical components may need to be con-
sidered to satisfy each system requirement. Existing work to verify
self-adaptive CPS [36] uses explicit state model checking. This can
lead to state explosion and may not be computationally feasible for
large-scale systems.

In this paper we tackle the complexity of self-adaptive CPSs by
proposing a novel language, Adaptive CSP (ACSP), to represent
modularly and support compositional verification of self-adaptive
CPSs. We also provide a technique to do this and explore alternative
adaptation procedures that are modelled using our language.

First, a system designer should model the components of a CPS
as parallel processes in ACSP. Then she should identify a sub-set of

https://doi.org/10.1145/3194133.3194146
https://doi.org/10.1145/3194133.3194146
https://doi.org/10.1145/3194133.3194146

SEAMS ’18, May 28-29, 2018, Gothenburg, Sweden

these components that can affect satisfaction of each given require-
ment, and encode an adaptation of these components to preserve
the requirement. Although manual, the task of identifying compo-
nents relevant to a requirement can be guided by topological rela-
tionships [31] (e.g., containment and connectivity between system
components). For example, in a smart building a valuable physical
asset may be contained in a room while a digital asset, such as
data, could be contained in a server. Moreover, physical areas can
be connected through doors or digital devices can be connected
through an IP network. If a requirement aims to preserve integrity
of digital information stored in a server, the components that can
affect its satisfaction are, for example, the rooms that are connected
to the one containing the server as well as the devices digitally
connected to the server.

Similarly to existing standard process languages (e.g., [25, 30])
ACSP can encode system components as parallel processes and
system actions (e.g., access/exit to/from a room, connection to the
wireless network) as first-order communication (i.e., transmission
of data). ACSP also adds significant expressive power compared
to standard process languages by encoding adaptation functional-
ity through a new, higher-order communication construct. More
precisely, it allows representing system monitors which use higher-
order communication (i.e., transmission of processes) to trigger
adaptation of components.

System actions as well as adaptation functionalities can be veri-
fied for the modelled components independently from the entire
CPS thus enabling compositional verification. Because the state
space of such sets of components can be significantly smaller than
that of the entire system, it is possible to use formal verification
technologies. In this paper we use FDR [20], a refinement checking
tool for CSP; however, our technique is general enough to allow the
use of other verification technologies for process calculi, such as
(bi-)simulation, testing preorder, and modal logic techniques (e.g.,
[4, 12, 15, 24, 30, 32]). If the verification fails, the system designer
can explore alternative adaptation procedures, which can be im-
plemented at a different granularity, i.e. across a fewer or more
CPS components. We showcase and evaluate our approach using
a running example of a smart art gallery. Our results show that
our technique reduces significantly the computational complexity
of verifying self-adaptive CPSs. Moreover, the ability to explore
different adaptation procedures allows identifying and selecting
one that maintains satisfaction of critical requirements.

The rest of the paper is organised as follows. The next section
discusses an art gallery building as a motivating example of a self-
adaptive CPS. Section 3 describes our technique for modelling and
verifying such systems using a novel process language ACSP, and
standard verification tools such as FDR. Section 4 presents ACSP
and Section 5 the encoding of the art gallery in this language. We
then discuss how ACSP processes can be translated and verified
in FDR. Sections 7 and 8 discuss related work and conclusions,
respectively.

2 THE ART GALLERY EXAMPLE

Our motivating example is set in an art gallery building. The two-
floors plan of the gallery is shown in Figure 1. Floor 1 includes a
corridor and a set of exhibition areas (Hall and rooms A, B, C, D)

Aimee Borda, Liliana Pasquale, Vasileios Koutavas, and Bashar Nuseibeh

Computer Room Restoration Area
i
= ab
G Workman
Access point l\ HVAC
o
8
Corridor 2 o
—
]
-
Hall 8 I
Guard A
Visitor
|
2e | 22T 7 g
a |p <10 - 2
£
[]} ﬁ h o
o
[5
2 2 w |-
@ Guard 5
A B 4 c z

NG

Figure 1: Two-floors plan of the Art Gallery.

where paintings are displayed. Floor 2 includes a Restoration Area
where maintenance and restoration of artwork is carried out. An
HVAC maintains a predefined target temperature and humidity level
in the Restoration Area. A wireless access point in the Computer
Room provides internet connectivity to the devices located in Floor 2.
It is also connected to the HVAC allowing the latter to be monitored
and controlled remotely.

Public access to the Restoration Area is allowed to promote the
restoration activities of the gallery. Nevertheless, a critical security
requirement for the art gallery is:

REQUIREMENT 1. Visitors should not interfere with the restoration
process.

Req. 1 could be violated when a visitor is in the Restoration Area
without a guard. However, controlling access to the Restoration Area
is not always possible. For example, when restoration work is per-
formed, access to the restoration area should be free of controls to
allow efficient movement of workers. This can lead to the situation
where visitors can access the Restoration Area and interfere with
the restoration work. To avoid violating Req. 1 a system designer
can introduce adaptation procedures at different granularities. For
example, adaptation can be applied at the level of the second floor,
allowing access to the Restoration Area only with a guard. However,
this would not be optimal because it would obstruct movement of
workers. Alternatively, an adaptation at a coarser granularity could
also consider Corridor 1 and the Stairs. This can force the guard
located in Corridor 1 to escort visitors as soon as they start climbing
the stairs to reach the second floor. This would ensure that visitors
always reach the Restoration Area accompanied by a guard.

In our example, a very important painting at the core of the
current exhibition is located in Room D. Visitors can enter this
room from Room B and exit to Room C. To maintain integrity of the
painting, the following requirement should be satisfied.

Compositional Verification of Self-Adaptive Cyber-Physical Systems

REQUIREMENT 2. No more than 10 visitors should be in Room D
at the same time.

To satisfy this requirement an adaptation can be applied only to
Room D: visitor access to this room can be allowed only when there
are less than 10 people in it. However, there are situations in which
Req. 2 can be violated, for example when multiple visitors enter
Room D at the same time (e.g., by tailgating). Including Rooms A and
B in the design of the adaptation procedure can support satisfaction
of Req. 2. It is possible to ensure that the total number of visitors in
Rooms A, B, and D does not exceed the maximum number of people
allowed in Room D alone, and require a guard in the Hall to prevent
tailgating when visitors enter Room A. Alternatively, an adaptation
procedure could keep track of people in Rooms A, Band D and allow
movement from one room to the next only when the sum of people
in both rooms is less than an upper bound. For example, movement
from Room B to D would be allowed only when the people in the
two rooms are less than 10.

Finally, the following requirement should be satisfied.

REQUIREMENT 3. The HVAC should not be controlled remotely by
unauthorised users.

Considering the vulnerabilities of the wireless protocols, Req. 3
can be violated when a malicious visitor’s device connects to the
wireless network and takes control of the HVAC. To satisfy this
requirement an adaptation procedure can be designed by consid-
ering the Restoration Area, the Computer Room and Corridor 2. In
this case, an adaptation procedure can disconnect the HVAC from
the network when an untrusted device in the second floor is con-
nected to the Access Point. Additionally, this adaptation procedure
could disconnect clients and reconnect the HVAC to the Access Point
when a designated trusted device connects, presumably to perform
maintenance operations on the HVAC.

This example demonstrates how adaptation procedures aiming
at preserving a critical requirement can be implemented at different
granularities. Note that dividing the system in rigid self-adaptive
modules a priori poses the risk of not being able to implement an
optimal adaptation procedure. Therefore, we provide a methodol-
ogy to support system designers in the definition of adaptation
procedures at appropriate granularities, which satisfy specific re-
quirements. The benefit of discovering a good level of granularity
for an adaptation procedure is that it can be verified only in rela-
tion to the components it affects, ignoring the rest of the system.
This makes it more tractable to use formal techniques to provide
assurances for the system, as we later show in this paper.

3 MODELLING AND VERIFYING
SELF-ADAPTIVE CPSs

Our technique to model self-adaptive CPSs and verify their require-
ments comprises the following steps.

Step 1: modelling the CPS. A system designer first identifies the
main cyber and physical components of the CPS, such as rooms
and assets. Each component may have containment and connec-
tivity relationships with other components. Fig. 2 represents the
components of the art gallery example and their relationships. For
example, Corridor 2 can contain agents (e.g., visitors, employees and
guards) and it is physically connected to the Stairs, the Restoration

SEAMS ’18, May 28-29, 2018, Gothenburg, Sweden

Corridor 2 Stairs Corridor 1 [Visitor
| — [|

Computer Restoration
Room Area

=]

Hall D

Access HVAC I
<_ T .
Legend
[] component <= Physical Connectivity
Visit
— Containment - + Digital Gonnectivity isitor Visitor

Figure 2: Components of the Art Gallery.

>
@

Area, and the Computer Room. The Access Point can have connec-
tivity relationships with the HVAC and with other employees’ and
visitors’ devices located in Floor 2 that are connected to the wireless
network. The Computer Room has a containment relationship with
the Access Point and the agents that are located in it. Similarly, the
Restoration Area has containment relationship with the HVAC and
the agents in it.

Topological relationships can enable execution of system actions.
For example, if an agent is contained in a physical area, she can
access other connected physical areas and perform actions in them.
In the art gallery example, if an agent moves from the Stairs to
Corridor 2, she can connect a device she is carrying to the Access
Point. Moreover, agents contained in a physical areas can access
and/or control co-located assets, if available. For example, agents
in the Computer Room can switch on/off the Access Point.

Step 2: exploring adaptation procedures. In this step, the system
designer examines each requirement, determining the components
that can affect its satisfaction. Here we consider this to be a manual
task, but it can be guided by the topology of the CPS. Certainly,
relevant components include the one the requirement refers to.
They may also include additional components identified consider-
ing its containment and connectivity relationships. For example,
the components affecting satisfaction of Req. 1 can include the
Restoration Area and those related to it (Corridor 2, Stairs and Cor-
ridor 1). Different adaptation procedures can be explored starting
from the most specific component relevant to the requirement, and
including more components affecting the requirement’s satisfac-
tion as necessary. For example, to satisfy Req. 1, as we discussed
in the previous section, an adaptation procedure may consider the
Restoration Area and Corridor 2. More precisely, it may keep track
of the presence of a guard in Corridor 2, and only allow access/exit
to/from the Restoration Area if a guard is in Corridor 2. However,
this may not always be desirable because when a guard is not in
Corridor 2, workers may not be allowed to freely access or leave
the Restoration Area. Alternatively, the adaptation procedure could
monitor visitor access to the Stairs from Corridor 1 and notify the
guard stationed in Corridor 1 to escort visitors in Corridor 2.

Step 3: encoding with Adaptive CSP. The system designer can sub-
sequently encode the CPS components and adaptation procedures
in our ACSP language. Each component can be encoded as a parallel
process or an internal state. In our example, we encode all com-
ponents except agents as processes. Each component representing

SEAMS ’18, May 28-29, 2018, Gothenburg, Sweden

a physical location has an internal state representing the number
of visitors, guards and workers that are contained in it. System
actions, such as agent movements or Access Point connections, are
implemented as first-order communication events (i.e. transmission
of data). Adaptation procedures are composed of a monitor, which
listens to first-order communication events and issues higher-order
communication events, encoding the the adaptation procedure se-
lected in the previous step. As discussed in the following sections,
to tag the components that can be adapted we place them inside
named locations.

Step 4: verifying system requirements. Finally, the system designer
verifies each requirement. This is done by translating parts of the
self-adaptive CPS, as encoded in our language, to existing verifica-
tion tools—here we choose FDR. The smallest set of components
that need to be translated is easy to find. For each requirement,
only the following elements are translated to FDR:

(1) The components that affect the satisfaction of the given re-
quirement (i.e., those explicitly named by the requirement). If
these components are inside named ACSP locations (i.e., they
are adaptable), then the entire location must be translated,
potentially including more components.

(2) All the adaptation procedures that affect the locations in-
cluded in the translation. Here we assume that each adapta-
tion procedure affects exactly one location, but many proce-
dures can affect the same location.

(3) The first-order communication events of the components
included in the translation.

In this manner we translate the smaller set of components that
include those relevant to the requirement, and whose higher-order
adaptation events can be entirely internalised (no adaptation event
can cross the boundaries of this set) and encoded as internal tran-
sitions in FDR. The requirement itself is encoded using the capa-
bilities of the verification tool; in FDR we use refinement. This is
described in more detail in Section 6. If the verification fails then
the requirement and adaptation procedure must be re-examined,
going back to Step 2, possibly considering a different granularity
for the adaptation procedure.

4 THE PROCESS LANGUAGE ACSP

Our technique is based on a process language which we call Adap-
tive CSP (ACSP). This language extends Communicating Sequential
Processes (CSP) [25] with locations and higher-order communica-
tion. ACSP is defined over a set of first-order events, ranged over
by e, and a set of location names, ranged over by I. We reserve the
special first-order event 7 for internal communication, and use ¢, d
to range over events and location names.

c,di=e | 1

We also use X for process variables and y for event variables; we let é

range over events and event variables. We use standard notation for

sequences (©) and the usual syntactic sugar from process languages.
The abstract syntax of the language is:

P,Q,R,M,N,II := SKIP | O, 7 é;—P; | ifé; < é; then P else Q
| PQQ | (ve)P | X(8) | recX(ij:=é).P | I'P.Q | I(P)

Aimee Borda, Liliana Pasquale, Vasileios Koutavas, and Bashar Nuseibeh

Processes, ranged over by P, Q, R, M, N, IT include the standard
CSP processes: the inactive process (SKIP); external choice where
the environment can choose between a set of events {e; | i € 7},
written as UJ; . 7 e;—P;, with 7 being an indexing set; a conditional
process (ife < e’ then P else Q); parallel composition of pro-
cesses (P || Q) which synchronise on a set of non-r events X; scope

z

restriction of events and location names ((vc)P); and recursion
(recX(y := €).P) through process variables (X) and event parame-
ter variables (y). ACSP processes also include the new constructs of
a higher-order prefix [!P.Q that sends a process P to location /, and
named locations (I{P)). Intuitively, a named location [(P) marks
process P with name [, which can be adapted to I[{Q) through a
higher-order communication with a prefix I!Q.R, residing outside
of the location.

The operational semantics of ACSP is defined by labelled transi-
tions annotated by: 7, when the transition is internal; e # 7, when it
is a first-order synchronisation event; [?P, when location [is being
adapted and becomes P; [!P, when an external process initiates such
an adaptation. Higher-order transition annotations are ranged over
by h; all transition annotations are ranged over by a.

h=z=1P | I?P a=ce | h

The rules of the transition semantics of ACSP are shown in
Fig. 3. Adaptation transitions are the main novelty of ACSP; event
transitions are similar to CSP. External choice (EvCH) can transition
to one of its residual processes P, annotating the transition with
the corresponding action ej. The parallel rule (EVPARL) and its
(omitted) symmetric rule propagate an event transition e of P over
a parallel composition P || Q, provided that e is not mentioned in the

set of events E on whiclfj P and Q must synchronise. Rule EvSync
synchronises such an event.

Rule REc unfolds a recursion by an internal transition during
which the formal parameters of the recursive process j are replaced
by the actual parameters €, and the recursion variable X is replaced
with the recursive process itself. Note that substitution of X in
processes of the form X (Ef) preserves €’ as the formal parameters.
That is, X(&")[F€cX(@:=9)-P / ;] becomes recX(j = €’).P, and we can
have the following example transitions:

recX(y := 1).(e.y—X(y + 1)) SLEN
e.l—-recX(y =1+ 1).(e.y—X(y + 1)) LI ILAN

e.2—recX(y =2+ 1).(e.y—>X(y + 1)) L2 T, e

Rule EVHIDE hides an event from the surrounding processes,
converting it into 7; EVEsc propagates an event over a scope re-
striction, and IFTRUE and (omitted) IFFALSE evaluate a conditional.
Our language also includes rule EvLoc which propagates event
transitions over locations.

We have chosen CSP-style synchronisation for first-order events
in our language because they simplify the encoding of monitor
processes, which can be used to keep track of state and encode
adaptation procedures.

Example 4.1. Consider Corridor 2 (c2) from Fig. 1, which is con-
nected with a door to the Stairs (s). We can encode the movement
of visitors, employees and guards from one space to the other by

Compositional Verification of Self-Adaptive Cyber-Physical Systems

Event Transitions:
EvCH EvPARL

jer P—=5P eg¢E

EvSyNnc

PS5P 0-550Q ecE e#1

SEAMS ’18, May 28-29, 2018, Gothenburg, Sweden

REC
o= [é’/g][(recx(ﬁ = E).P)/X]

ej e
Digjei_)Pi—i_)Pj Pll!:Q'——_’P,L!:Q

EvHIDE EvEsc
PP P—=5P cxe

e
PlQ— P'||Q
E E

IFTRUE
e1 < e

(ve)P — (ve)P’ (ve)P —— (vc)P’

(ife; < ey then P else Q) 5P

recX(ij := ¢).P — Po

EvLoc
PS5 p

I(PY = I(P’)

Adaptation Transitions:

A ADSYNCL ADPARL AbpEsc AbLoc
DSND AbRcv 'R 7R h h h
P—P Q0—Q P— P P— P c¢h P— P
np 7P T h h h
IP.0 — Q Q) —> I(P) PJIEIQ — P’JIEIQ’ PIO——P |0 (voP —> (vo)P’ I{P) —> K(P’)
E E

Figure 3: Transition Semantics of ACSP (omitting symmetric rules).

a family of first-order events: vis(s .,) encodes the movement of a
visitor from the Stairs to Corridor 2, and vis, ;) the reverse; simi-
larly, events grd(s ,) and grd.,) encode the movement of guards
between the two spaces. A process that models visitor movement
is the following:

C20 =0 ViS(s,e) 20
’Ul'S(CZ’S)—>C20

Here we assume that a guard is already in, and not allowed to
leave cy. In order to keep track of the number of visitors in Floor
2, entering from the stairs, we can use a monitor process for the
events vis(s,,) and vis(c, s):

is(s, ¢,)—C(v + 1)
C(v) = U vis(c,, sy—C(v - 1)

cnt.v—C(v)

Note that here we write C(v) = P instead of C = recX(y := v).P,
and assume a standard encoding of natural numbers. Process C(v)
keeps the number of visitors in v, which it can report through
the (parameterised) event cnt.v. We can now compose the two
processes
C20 || Cw)
VIS

such that whenever a visitor enters or leaves Corridor 2 from the
Stairs, the state of C(v) increments or decrements, accordingly. O

Adaptation is a higher-order transition which has a single sender
and a single receiver. The sender is a process [!P.Q which performs
a transition annotated with [/!P, according to rule ADSND of Fig. 3.
The receiver is a location with name [which performs transition
I1?P, according to rule ADRcv. These transitions synchronise with
rule ADSyNCL (and its omitted symmetric rule), and are propagated
over parallel, scope restriction, and locations according to rules
ADPARL (and its omitted symmetric), ADEsc, and AbpLoc, respec-
tively. Because of the sender-receiver communication pattern of
adaptation, and since we intend locations to have unique names, we
choose binary communication for these higher-order transitions.

Example 4.2. Continuing from Example 4.1, an adaptation pro-
cedure can query the counter after every visitor move, and change
the behaviour of Corridor 2, when for example there are no more
visitors in Floor 2. To achieve this we consider that process C2,
encoding visitor movement in and out of ¢y, is inside a location Iy,
and can thus be adapted. The following process II installs process
C21 in this location when all visitors have left ¢5:

I = vis__y—cnt.v—ifv = 0 then [c!C21.I1 else I

Here vis(__y represents any visitor events. Process C21 allows the
guard to leave ¢y and prevents further movement into cz, encoding
the closing of the space.

C21 = grd(c, s)— SKIP

The model of Corridor 2 is the composition of the above pro-
cesses.
(v le2)(Ic2(C20) || C(1) || TI)
vis vis,cnt
The following execution shows how location I, is adapted when
the last visitor leaves:

ViS(cy,s)
nm) —

(v le2)(lc2(C20) || C(1) I

vis,cnt

cnt.0

(v lc2)(lc2(C20) || C(O) || II) —>

vis vis,cnt

(v le2)(le2(C20) || CO) |

vis vis,cnt

115(0)) —>

(v Ic2)(Ica(C20) || C0) || Iep!C21.TT) —

VIS vis,cnt

(v lea)(lca(C21) || CO) || 1)

VIS vis,cnt

Here we let II; = cnt.v—Ilz(v) and IIz(v) = (ifv = 0 then
Ic2!C21 11 else II). The last transition is due to the synchronisation
of the transitions

1'C2y

1?7C2,
Ic2{(C2¢) — 12{(C21) Icp!C21.11 —> 1T

SEAMS ’18, May 28-29, 2018, Gothenburg, Sweden

Note that in this example we restricted the scope of the I to
illustrate that the adaptation of a location can be localised—no
process outside the restriction can adapt [¢». O

In the following we will use functions out(P) and in(P) to re-
turn the set of free location names in P used in send-prefixes and
locations, respectively.

Definition 4.3. out(P) and in(P) are defined by the rules
out((vc).P) = out(P) — {c}
out(I'P.Q) = {I} U out(P) U out(Q)

in(I(P)) = {1}
in((vc).P) = in(P) — {c}

and in all other constructs of the language by the union of the
results of recursive calls to these functions. O

The language ACSP is powerful enough to support nested lo-
cations, adaptation procedures within locations (which can them-
selves be adapted) and location redundancy. However for the pur-
poses of this paper, and to simplify the translation of ACSP processes
to existing verification tools such as FDR, we restrict the syntax of
the language to well-formed processes.

Definition 4.4 (Well-Formed Processes). An ACSP process P is
well-formed when:
Unique Names: Every location name in P is unique; i.e., every
sub-term of P of the form Q; || Q2 has the property that
E

in(Q1) N in(Qz) = 0.

Flat Structure: Locations are not nested; i.e., every sub-term of
P of the form O, ; Q;, (ife < e’ then Q else Q’), (e—Q),
(1'Q.Q"), (recX (i := €).Q) does not contain locations in Q,
Q' Qi.

Static Adaptation: Adaptation processes cannot be sent out pro-
cesses containing higher-order events; i.e., every sub-term
of P of the form I!Q.R does not contain location outputs
(adaptations actions) in Q.

Single Adaptation Procedure: Every location has at most one
adaptation procedure; i.e., every sub-term of P of the form
Q1 || Q2 has the property that out(Q1) N out(Qz) = 0. O

E

Well-formedness is preserved by the transition semantics, there-
fore, starting from well-formed processes we only reach well-formed
processes.

THEOREM 4.5. If P is well-formed and P 5 P’ then P’ is well-
formed.

In the remaining sections we implicitly assume all processes
are well-formed. As we show in the following section, these can
model complex self-adaptive CPSs, such as the art gallery building.
They can also be translated to FDR for verifying properties of such
models (Section 6).

5 MODELLING THE ART GALLERY EXAMPLE

Here we discuss how the art gallery building can be encoded in
ACSP. Following the steps described in Section 3, we first iden-
tify the cyber and physical components of the system and their

Aimee Borda, Liliana Pasquale, Vasileios Koutavas, and Bashar Nuseibeh

topological relationships. For the art gallery, these were shown in
Fig. 2.

The second step in our modelling technique involves examining
each of the requirements of the CPS. Here we focus on Req. 1 from
Section 2: Visitors should not interfere with the restoration process.

To enforce this requirement it would be sufficient to entirely
disallow visitor access to the restoration area. However, as discussed,
this is not desirable because of promotional reasons. Therefore, we
will require instead that when visitors are in the restoration area
a guard is present. We assume that the presence of a guard in
Corridor 2 is sufficient for ensuring rules of conduct are respected
(e.g., visitors do not obstruct the work of restoration workers).
Alternative approaches are also possible.

There are a number of ways that the system can implement the
required presence of a guard. Using adaptation procedures for these
implementations allows us to easily replace one with another in
the model and compare them, while reusing the encoding of CPS
components.

Here we examine two possibilities. In the first we encode a sim-
ple access policy: the door between Corridor 2 and restoration area
precludes entrance of visitors to the latter, unless a guard is in the
corridor.

The components relevant to this policy are the Restoration Area
and Corridor 2. These components are connected in the model of
Fig. 2 through the physical connectivity of a door. We design a
family of first-order events to encode this connectivity: #(, ra) and
t(ra,c,) Tespectively encode the movement of agents from Corri-
dor 2 (cp) to the Restoration Area (ra) and vice-versa. Here t can
take the form vis or grd to represent visitor or guard movement,
respectively; for simplicity we only consider value vis.

The Restoration Area (including its door) can have one of two
functionalities:

(1) Visitors are allowed to enter the restoration area, encoded
by the process:

Ry = viS(ra’Cz)—>R0 O viS(CZ’ra)—>R0

We assume that this process models an unlocked door with
free movement of agents.

(2) Visitors are not allowed to enter the restoration area, en-
coded by the process: Ry = SKIP. In this situation the door
is assumed to be locked and agents need to present their
credentials to open it.

The internal state of the Restoration Area keeps track of visitors
movement to make sure that the number of people leaving are less
than or equal to the number of people entering it. !

R(v) =(v > 0 & Vis(ry, ¢,)—R(v — 1)) O (vis(c, ray—R(v + 1))

We now define the adaptation procedure for the Restoration Area,
which monitors movement of a guard from the Stairs to Corridor 2,
and vice-versa, to allow/disallow access of visitors to the restoration
area; this is:

[0y = grd, ¢,)—RA!Ry. 11,
O grdc, s)—RAR; . 11,

lwe use b&P as a shorthand for if b then P else SKIP

Compositional Verification of Self-Adaptive Cyber-Physical Systems

In order for this adaptation to take effect, the process responsible
for access to the restoration area should be in a location with name
RA. The encoding of the restoration area, including its adaptation
procedure, in the initial state where no guard or visitor is present
in the upper floor thus becomes:

ResArea =(vRA)II, || R(0) || RA(R1))
E, E,
where Ey, = {viS(c,, ra)» ViS(ra, ¢;) }-

The Corridor 2 component allows movement to/from the Restora-
tion Area, but also the Stairs, encoded by the family of events ¢, i)
and ¢(s c,), where t € {grd, vis}. The internal state of Corridor 2
keeps track of the number of visitors in the space, which can be
expressed as a monitor of the movement events.

ViS(s, ¢p) 2 C(Ve, + 1, Vras ge,)
Ve, > 0& UiS(CZ,s)HC(Ucz = 1,%ras gc,)
Ve, > 0& visc, ra)—=C(ve, = 1,Vra + 1, 9c,)
C(vey, Vrarge,) = O vra > 0& 0iS(r, ¢, = Cl(Ve, + 1, Vra — 1, gc,)
ge, = 0& grd(s,cz)ﬁc(vcw Uras g, + 1)
Jge, > 0& grd(cz,s)ﬁc(vcz,vra, Yy — 1)
cnt.ve, + vra—C(ve,, Vra, ge,)

Here the event cnt is used to query the value of the monitor from
the main adaptation process.

For our policy to be correct, the guard should be allowed to leave
the upper floor (through the stairs) only when there are no visitors
left in it. Thus Corridor 2 can have one of two functionalities:

(1) The guard is allowed to leave Corridor 2 as there are no
visitors in the upper floor, encoded as the process:

o= O {t(s,cZ)—)Czo

te{vis,grd} t(cz,s)_)czo
O vis<cZ,ra)—>C20

[m] vis(ra, CZ)-)CZ()
(2) The guard is not allowed to leave, encoded by the process:

UiS(S’Cz)—)C21
Vis(c,, 5)—C21
Cc2; =0 ViS(c,, ra)—C21
ViS(ra, ¢,) —C21
grd(s’ CZ)—>C21
The adaptation procedure of Corridor 2 monitors the movements

of visitors in and out of the Stairs and updates the door allowing/dis-
allowing the guard to leave the floor.

¢, = viss,¢,)—cnt.v— ifv = 1 then C2!C2;. 11, else I,
0 vis(c, s)—cnt.v— if v = 0 then C2!C2. I, else I,
O vis(c,, ra)— ¢,
O vis(ra, ¢,) = e,
O grd(c,, s)— e,
O grds, c,)— e,

SEAMS ’18, May 28-29, 2018, Gothenburg, Sweden

We can now write the encoding of Corridor 2 which uses location
C2 to adapt the functionality of the door connecting it to the Stairs.
Corr2 = (vC2)(ventv)Ie, || (C(0) || C2(C20)))

E,cnt E
Here E is the set of all movement events involving c;.

In the composition of Corr2 and ResArea, the two components
interact explicitly through the door between them but the Restora-
tion Area also listens implicitly to the guard movement in Corridor
2. These events have to synchronise across the components

Corr2 || ResArea (%)
E;
where E1 = {0iS(ra, ¢,)» ViS(c,,ra) 97(s, c)s 97 A(cy, 5) }-

As we explain in the following section, we can verify the cor-
rectness of (x) independently of the rest of the system, through our
translation to FDR.

We can also encode an alternative policy in which the door to
the restoration area is rarely locked, improving the movement of
restoration workers. To do this, we extend the adaptation procedure
of the Restoration Area, so that it monitors the entry of visitors to
the Stairs and calls the guard from Corridor 1 when necessary.

0, (b) = grd, ¢, —RA!Ry. TI,(t t)
O grd(e,) —RAIR;. I, (f)
0 vis(c,5)— if =b then call_guard— I1,(b) else I1,(b)
O 0iS(rq, ¢p)— Hr(b) O vis(c, ray— M (b)

Note that the rest of the encoding of the system needs no change.

6 VERIFICATION PROCESS

As we discussed earlier, we can use existing verification technology
to verify sets of components of self-adaptive CPSs modelled in our
language, provided that they entirely encapsulate their adaptation
procedures. However, our technique allows us to identify such
sets of components in complex self-adaptive CPSs, and indeed the
components in (*) do encapsulate their adaptation procedures.

Here we show how to use FDR for such verification. To do this we
employ a translation from ACSP to CSP, which is the core language
of FDR. First we briefly review CSP and FDR and then present the
translation.

6.1 CSP and FDR

Refinement-checking is a verification technique whereby an im-
plementation is deemed correct if its behaviour is contained in the
specification’s behaviour—it is a refinement of the specification.
FDR [20] is a refinement-checker based on CSP. The CSP language
consists of processes derived by the syntax:

P,Qu=e—P|POQ|P| Q| SKIP| ifb then P else P
A

| letx = PwithinQ | P[¢2/ei]] | PAQ | P\ A

Here e—P means that the process P is guarded by action e.
CSP allows us to pattern-match e. External (deterministic) choice
P O Q allows the environment to choose between synchronising
with P or Q. The processes ifb then P else P, P \ A, P[[¢2/e]],
letx = P within Q and SKIP represent conditional, action hiding,
event renaming from e; to ey, let declaration and the deadlocked

SEAMS ’18, May 28-29, 2018, Gothenburg, Sweden

TCHX TScp

i € 7 impliesT + P; > S; rrMp>S

Tr(veM> S\ {e}

Tr0,crei—Pi> 0, 7 ei—S;

TIF TSKP

T'rP>S THQODT
I'+ife; < ey then Pelse Q>ife; <epthenSelseT

TLoc
leTl Tr+PP>S

T+ IKP)y>S A recr(l)

TVAR

Try>y

I' + SKIP > SKIP

Aimee Borda, Liliana Pasquale, Vasileios Koutavas, and Bashar Nuseibeh

TREC
F'rPp>S
[+ recX(y := €).P > let X(¢) = S within X ()
TAPP TSND
leT m(l'P)=e THQD>S
T'+ X(e) > X(e)
T HI!P.Q D> e—S

Figure 4: Translation into CSP

processes, respectively. As in our language, interleaving P || Q re-
A

quires P and Q to synchronise on actions in the set A but requires no
synchronisation on events not in A. An interrupt process, written
P A Q, propagates any event from P without affecting the inter-
rupt, but if Q ever performs a visible event then this removes the
interrupt and P, and the entire process behaves as Q.

The three main semantic models of CSP are trace (T), stable
failure (F) and failure-divergence (FD) models. In the trace model,
P Ct Q denotes that traces(Q) C traces(P). This is useful for spec-
ifying safety properties, i.e., all the traces of implementation Q
are in the traces of the specification P. The stable failure model
compares the set of failures: failures(Q) C failures(P). A failure is
the possibility to refuse a set of actions after performing a trace. In
this model, we can define liveliness properties, by showing that if
an action is not refused (i.e., it eventually happens) in the specifi-
cation P, then it is also not refused by implementation Q. Finally,
the failure-divergence model further compares the set of diverging
processes: failures(Q)U divergence(Q) C failures(P)U divergence(P).
Here a divergence is a trace that can lead to an infinite loop, thus
refusing to perform any observable transition after the loop.

FDR [20] is an automatic refinement tool for machine readable
CSP—CSP[33]. We can check that an implementation refines the
specification according to one of the semantic models through
assertions assert Spec [M= Impl whereM € {T, F, FD} We can
also verify that the implementation is deterministic, deadlock free
and livelock free (divergence free) according to one of the semantic
models assert Impl :[deadlock free [MI].

6.2 Translation into CSP

In Fig. 4, we depict the translation of our modelling language ACSP
into CSP. This is defined by structural induction on ACSP terms,
and presented by judgements of the form T + P > S translating an
ACSP process P to a CSP process S, with respect to an environment
I' which is a set of location names used in P.

By a pre-processing step, we can collect all location names used,
and all processes inside higher-order outputs. This is possible be-
cause we work with well-formed processes (Definition 4.4). We can
thus assume an injective map m mapping from higher-order pre-
fixes to distinguished CSP events. We trivially extend this mapping
first-order events, such that m(e) = e for all events e. We also let p
be the inverse mapping, taking events back to the process commu-
nicated i.e., p(e) = P if there exists a location [where m(I!P) = e,

or e otherwise. Furthermore, a function ch returns the set of events
attached to each location [i.e., ch(l) = {e | VP.m(l!P) = e}.

The rules TChx, tScp, tRec, tlf, tSkp, tApp give a direct mapping
to CSP of many ACSP processes. The adaptation mechanism is
encoded in the rules tSnd, tLoc and tPar. Rule tSnd translates [!P.Q
by prefixing the translation of Q with the event defined in m(I!P).
Rule tLoc translates a location [, which is the receiving side of
adaptation of /. We utilise the interrupt construct to implement the
location: the translation of process P can be interrupted by any
event in ch(l). Here we use

recr(l) = DeEch(l) e—(Te A recp(l))

where any e € ch(l) translates to T by T + p(e) > Te. This CSP
interrupt unfolds recr(I) with every ch(l) event, guaranteeing the
execution of the right (translated) process that should run after
each adaptation of /, and reestablishing the interrupt.

Example 6.1 (Adaptation Processes). Assume the map m such
that m(l/!a—SKIP) = e; and m(l!b—SKIP) = e;. Then we have the
translation

T+ [{(a—b—SKIP) 1> (a—b—SKIP) A R

where R = e;—(a—SKIP A R) O ea—(b—SKIP A R) for all T such
that [e T.

Dually, the process I!a— SKIP.SKIP initiating an adaptation trans-
lates to CCS according to: T + ['la—SKIP.SKIP > e;—SKIP. O

Finally, rule tPar translates a parallel composition M || N into
E

a CSP parallel composition. The set of events E is transferred to
the CSP parallel, extended with synchronisations of events encod-
ing adaptation between M and N. This is expressed by the set
(in(N)Nout(M)) U (in(M) Nout(N)) in the premises of the rule. The
translation of M and N is then done under an environment contain-
ing these extra names, which can be used for translating locations
and higher-order prefixes in them. The events corresponding to
these location names are then localised around the parallel. This
prevents the interruption of (translated) locations if there are no
corresponding prefix processes.

Example 6.2 (Adaptation). The processes in Example 6.1 can
be composed together using tPar to model a complete adaptable
system. Note that the chosen L required by the rule need to contain

Compositional Verification of Self-Adaptive Cyber-Physical Systems

atleast!as! € out (I'a— SKIP.SKIP)Nin (I{a—b— SKIP)). It follows

I+ (l<a—>b—>51<1p> I l!a—>SKIP.SKIP) >
0

e1— SKIP

((a—>b—>SKIP) AR | \ {e1,e2}

{e1,e2}

Note that " must not contain [as this is added in the rule tPar,
which essentially guarantees that there is no other process that initi-
ate adaptation on [, and {e1, ex } are the events identifying potential
processes communicated on [. O

We prove that the translation, depicted in Fig. 4, is a strong
bisimulation. That is, transitions of the ACSP term are in loc-step
with the corresponding transitions of the CSP translation.

THEOREM 6.3. LetT + M > S; then:

a , . , m(cr) ’
(1) If M —— M’ then there exists S” such that S — S’ and
TeM >S
(2) IfS %5 S’ then there exist M’ and a such that m(a) = e and
M 25 M’ andT + M/ > §

This theorem allows us to conclude that every property of the
ACSP processes is also a property of the translated CSP processes,
and vice-versa. Thus reasoning in FDR about the translated pro-
cesses leads to verification results about the original ACSP processes,
and therefore verification results of the system.

6.3 Evaluation of the verification technique

Translating the system components of the Restoration Area and
Corridor 2, modelled in our language as process (x) in Section 5,
leads to an FDR file of 115 lines of code. Many of the transitions are
internal transitions, which FDR can eliminate using a simplification
command. This leads to a system of 27 states which can be easily
verified by the tool on a personal computer with 8GB of memory.
When translating the entire model of the art gallery to FDR we get
a model that quickly runs out of memory on the same system, even
with the use of simplification. It is thus clear that compositional
verification is a valuable technique for providing formal assurances
for self-adaptive CPSs.

The verification of (x) was done by encoding simple specification
automata in CSP accepting a language of correct traces, and then
showing that the translation of (x) has a subset of these traces
using FDR’s trace assertions. One of these specification processes
does not include traces where a visitor accesses the restoration area
without a guard present. Another shows that the guard does not
leave the Corridor 2 if there are still visitors in the second floor.

7 RELATED WORK

In this section we discuss existing approaches to model and verify
self-adaptive (SA) systems.

Refinement-based models. Hachicha et al. [23] present a refine-
ment-based framework for modelling and verifying SA systems. A
SA system is specified using UML diagrams, which are translated au-
tomatically into Event-B. The resulting model can be verified using
the Rodin theorem prover. Géthel et al. [21] overview how to model
different design patterns for SA systems using CSP. Bartels et al. [3]

SEAMS ’18, May 28-29, 2018, Gothenburg, Sweden

study how SA systems can be modelled using CSP. The framework
explicitly separates adaptive and non-adaptive behaviour, modelled
through events and processes. The authors discuss the limitation
of using CSP for modelling dynamic adaptation which stems from
the inability to create processes or events on-the-fly. The dynamic
creation of processes and events can be simulated if the events can
be determined at design time and utilise guards to switch between
events. This work was extended by Géthel et al. [22] to include time
dependencies within the model. In our work, indeed, adaptation
processes can be determined at translation time and we are able
to use FDR for verification. Our language allows dynamic gener-
ation of processes but more advanced verification tools would be
necessary to reason about such behaviour. Our work focuses on
compositional verification, which the above works do not address.
Moreover, our framework enables the exploration of alternative
adaptation procedures, which can be a valuable tool for designing
and verifying large-scale SA CPSs.

Hierarchical models. Bruni et al. [9] use Maude to model each
step in the MAPE-K feedback loop as an abstract state machine
(ASM), which can be model-checked using PVesta. Iftikhar et al. [26]
use timed automata and timed computational tree logic (TCTL) to
model decentralized SA systems and specify temporal safety and
liveness properties. These properties are model-checked using Up-
paal. Klarl et al. [28] present hierarchical LTS (H-LTS) which can
be model checked with SPIN and translated automatically into Java
code. Zhao et al. [38] model SA systems using mode-automata
and define mode extended LTL (mLTL); an extension of LTL with
context-dependent formulas for the specification of the system. The
semantics of mLTL is derived from that of LTL. Zhao et al. used
the NuSMV model checker as a verification tool. Jalili et al. [1]
explore a method to model and verify at runtime decentralized
SA systems based on HPobSAM framework, taking advantage of
decentralisation to achieve compositionality. In these works, the
ability to decompose systems into independently verifiable compo-
nents is limited or non-existent. Our work provides a structured
method to do this, when requirements allow it, even in systems
with components that are intricately linked with cyber and physical
relationships.

Petri-Nets. Zhang et al. [37] model SA systems as a collection
of petri-nets. Each petri-net has a single initial and final state. A
SA system transition between petri-nets through these states. This
work has been extended in [10] to incorporate temporal constraints
by considering the time-based petri-nets [5]. In a similar fashion,
Context Petri-Nets (CPN), introduced by Cardozo et al. [11], allow
dynamic reconfiguration of petri-nets to model adaptation; CPN
can be then translated automatically into petri-nets. Ding et al.
[17] explain how neural networks can be utilised to implement the
adaptation function wiring petri-nets together. Petri-nets are not
easily decomposable, and thus compositional verification is hard to
achieve. Moreover, they do not provide a fertile ground to explore
alternative adaptation procedures at different granularities of the
system, as precise adaptation procedures are hard to encode and
modify independently of the base system model.

SEAMS ’18, May 28-29, 2018, Gothenburg, Sweden

Process languages with passivation. Passivation has been intro-
duced in process calculi to enable the encoding of complex dis-
tributed systems with components that can be stopped and resumed
[34]. Bavetti et al. [8] propose the &-calculus, a higher-order cal-
culus inspired by the Calculus of Communicating Systems (CCS)
without restriction and renaming. A process P which is adaptable
and located at a, is denoted as a [P]. The environment can at any
time communicate a context to g, installing the context at the a-
location. This context may have holes which are then filled by
copies of P. This results in a highly dynamic language; verification
in this language would require new special-purpose techniques
and tools to be developed. Moreover, the absence of location re-
striction (scoping) severely limits compositional reasoning in this
language. Our framework is based in a more tamed higher-order
language, which enables a translation to existing verification tools
based on first-order languages, as we have shown with our trans-
lation to FDR. We make use of location restriction which allows
us to consider parts of the system where all locations are locally
scoped. Such parts can be verified independently from the rest of
the system, thus enabling useful compositional verification. We
also utilise CSP-style multi-party synchronisation rather than CCS
binary communication, to improve the separation of adaptation
procedures, which must monitor the events in the system, from the
system itself.

Other process languages. Debois et al. [16] define the DCR pro-
cess language, a Turing-complete declarative process language to
model and verify runtime adaptation in a modular fashion. They
define a non-invasive adaptation in a decidable fragment of the lan-
guage. An adaptation is non-invasive if a new process is spawned
during the adaptation. This sub-language is able to represent sys-
tems where a new resource or new condition is introduced during
adaptations. Lochau et al. [29] define DeltaCCS, an extension of
CCS to explicitly model behavioural variability in processes. The
authors also implemented a DeltaCCS model checker to verify the
processes. In our work, the process language is based on CSP-style
synchronisation to achieve a better separation of concerns as base
system components are oblivious to the adaptation procedures that
may affect them. Moreover, our process language, based on higher-
order communication can naturally encode a larger class of systems.
Bono et al. [6] present a data-driven approach to modelling SA sys-
tems based on session types. Adaptation does not alter the process
but filters the communication between the component from the rest
of the system. Our approach is different as it is based on a more natu-
ral encoding of self-adaptation with higher-order communications,
giving us more flexibility to encode systems. We also use scoped
locations, instead of session types to achieve compositional reason-
ing, which enables us to leverage existing verification tools such as
CSP. Schroeder et al. [35] model SA systems compositionally using
an assume-guarantee framework. This requires special-purpose
verification technology which is still to be developed [13, 27]. Our
framework leverages existing verification technology, such as FDR.
However, it would be interesting to explore possibilities of combin-
ing the two frameworks.

Other verification tecniques for self-adaptive CPSs. Tsigkanos et
al. [36] use bigraphical reactive systems to represent topological
relationships of cyber-physical systems. They apply explicit state

Aimee Borda, Liliana Pasquale, Vasileios Koutavas, and Bashar Nuseibeh

model checking to reason about security threats brought by changes
in the topological relationships that may occur at runtime. They
also provide an automated planning technique to identify security
controls to prevent or mitigate discovered threats. However, adop-
tion of model checking to perform security analysis may lead to
state explosion and may not be computationally feasible for large-
scale systems. To address this problem, Filieri and Tamburrelli [19]
describe a number of strategies (i.e. state elimination [14] and al-
gebraic approaches [18]) for using probabilistic model checking at
runtime when the system behaviour is expressed as a Discrete Time
Markov Chain (DTMC). These strategies can only be applied when
changes in the system representation can be expressed as different
assignments to its parameters (e.g., different probabilities for the
transitions of the DTMC) and cannot cope with changes in the
structure or behaviour of the system and its operating environment.
Balasubramaniyan et al. [2] model SA CPSs using timed-automata
and verify them in the UPPAAL model checker. The model incor-
porates explicit time delays that differ between physical and cyber
components. None of these techniques provide a compositional
method for the verification of SA systems.

8 CONCLUSIONS

This paper provides three main contributions. First, it proposes
Adaptive CSP, a novel modelling language to represent self-adaptive
CPSs in a modular way, separating system actions from adapta-
tion actions. Then, it provides a technique to use topological re-
lationships of CPS to decompose the system into a small set of
components that can affect—independently from the rest of the
system—satisfaction of a given requirement. A self-adaptation pro-
cedure aiming to satisfy a given requirement can be localised to the
components that affect its satisfaction. As the state space of these
components is typically smaller compared to that of the rest of the
system, we can use formal verification technology, such as FDR,
to check that the component behaviour and the self-adaptation
procedure identified by the system designer can satisfy a given
set of requirements. We also provide a translation from a subset
of our language to FDR to perform verification of self-adaptive
CPSs. We evaluated our approach using a substantive art gallery
example. Our results demonstrate that our approach has the benefit
of reducing the memory and time required to verify properties of
the self-adaptive CPS. Our technique for discovering a good level of
granularity for an adaptation procedure that ensures satisfaction of
system requirements can reduce the size of components that need
to be verified.

In future work, we plan to extend our approach to improve its
usability. We aim to develop a graphical interface to support system
designers in encoding of systems into Adaptive CSP. Moreover, we
want to integrate automated planning techniques to support the
automatic generation of alternative adaptation strategies in our
framework. We also hope to explore other verification technology
that can deal with the advanced features of Adaptive CSP.

Compositional Verification of Self-Adaptive Cyber-Physical Systems

REFERENCES

(1]

[2

[

3

=

[4

&

[10]

[11]

[12]

[14]

[15]

[16

[17

[18]

[19

[20]

[21]

[22

[23]

[24]

[25]

B. Abolhasanzadeh and S. Jalili. 2016. Towards modeling and runtime verification
of self-organizing systems. Expert Systems with Applications 44, Supplement C
(2016), 230 — 244.

S. Balasubramaniyan, S. Srinivasan, F. Buonopane, B. Subathra, J. Vain, and S.
Ramaswamy. 2016. Design and verification of Cyber-Physical Systems using True-
Time, evolutionary optimization and UPPAAL. Microprocessors and Microsystems
42 (2016), 37 - 48.

B. Bartels and M. Kleine. 2011. A CSP-based framework for the specification,
verification, and implementation of adaptive systems. In Proc. 6th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems.
ACM, 158-167.

Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
1995. UppAAL — a Tool Suite for Automatic Verification of Real-Time Systems. In
Proc. of Workshop on Verification and Control of Hybrid Systems III (Lecture Notes
in Computer Science). Springer—Verlag, 232-243.

B. Berthomieu and M. Diaz. 1991. Modeling and Verification of Time Dependent
Systems Using Time Petri Nets. IEEE Trans. Softw. Eng. 17, 3 (March 1991),
259-273.

V. Bono, M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. 2017. Data-driven
adaptation for smart sessions. Journal of Logical and Algebraic Methods in Pro-
gramming 90, Supplement C (2017), 31 - 49.

V. Braberman, N. D’Ippolito, J. Kramer, D. Sykes, and S. Uchitel. 2015. Morph:
A Reference Architecture for Configuration and Behaviour Self-adaptation. In
Proc. 1st International Workshop on Control Theory for Software Engineering. ACM,
9-16.

M. Bravetti, C. Di Giusto, J. A. Pérez, and G. Zavattaro. 2012. Adaptable processes.
Logical Methods in Computer Science 8, 4 (2012).

R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, and A. Vandin. 2015.
Modelling and analyzing adaptive self-assembly strategies with Maude. Science
of Computer Programming 99 (2015), 75-94.

M. Camilli, A. Gargantini, and P. Scandurra. 2015. Specifying and verifying
real-time self-adaptive systems. In 2015 IEEE 26th International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 303-313.

N. Cardozo, S. Gonzalez, K. Mens, R. Van Der Straeten, and T. DHondt. 2013.
Modeling and Analyzing Self-Adaptive Systems with Context Petri Nets. In 2013
International Symposium on Theoretical Aspects of Software Engineering. IEEE,
191-198.

R. Cleaveland, J. Parrow, and B. Steffen. 1993. The Concurrency Workbench: A
Semantics-Based Tool for the Verification of Concurrent Systems. ACM Trans.
Program. Lang. Syst. 15, 1 (1993), 36-72.

A. David, K. G. Larsen, A. Legay, M. H. Moller, U. Nyman, A. P. Ravn, A. Skou,
and A. Wasowski. 2012. Compositional verification of real-time systems using
ECDAR. International Journal on Software Tools for Technology Transfer 14, 6
(2012), 703-720.

C. Daws. 2004. Symbolic and Parametric Model Checking of Discrete-Time
Markov Chains. In Proc. 1st International Colloquium on Theoretical Aspects of
Computing, Vol. 3407. Springer, 280-294.

R. De Nicola and M. Hennessy. 1984. Testing Equivalences for Processes. Theor.
Comput. Sci. 34 (1984), 83-133.

S. Debois, T. Hildebrandt, and T. Slaats. 2015. Safety, Liveness and Run-Time
Refinement for Modular Process-Aware Information Systems with Dynamic Sub
Processes. Springer International Publishing, 143-160.

Z.Ding, Y. Zhou, and M. Zhou. 2016. Modeling Self-Adaptive Software Systems
With Learning Petri Nets. IEEE Transactions on Systems, Man, and Cybernetics:
Systems 46, 4 (apr 2016), 483-498.

A. Filieri, C. Ghezzi, and G. Tamburrelli. 2011. Run-time Efficient Probabilistic
Model Checking. In Proc. 33rd International Conference on Software Engineering.
341-350.

A. Filieri and G. Tamburrelli. 2013. Probabilistic Verification at Runtime for
Self-Adaptive Systems. Assurances for Self-Adaptive Systems 7740 (2013), 30-59.
T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A.W. Roscoe. 2014. FDR3 —
A Modern Refinement Checker for CSP. In Tools and Algorithms for the Construc-
tion and Analysis of Systems (Lecture Notes in Computer Science), E. AAbrahAam
and K. Havelund (Eds.), Vol. 8413. 187-201.

T. Gothel and B. Bartels. 2015. Modular Design and Verification of Distributed
Adaptive Real-Time Systems. Springer International Publishing, 3-12.

T. Gothel, N. Jahnig, and S. Seif. 2017. Refinement-Based Modelling and Verifi-
cation ofAdDesign Patterns forAdSelf-adaptive Systems. Springer International
Publishing, 157-173.

M. Hachicha, R. B. Halima, and A. H. Kacem. 2016. Modeling and verifying self-
adaptive systems: A refinement approach. In 2016 IEEE International Conference
on Systems, Man, and Cybernetics (SMC). 003967-003972.

M. Hennessy and R. Milner. 1985. Algebraic Laws for Nondeterminism and
Concurrency. J. ACM 32, 1 (1985), 137-161.

C. A.R. Hoare. 1978. Communicating Sequential Processes. Commun. ACM 21, 8
(Aug. 1978), 666-677.

[26]

[27]

[28

[29]

%
&

[36

(37]

(38]

SEAMS ’18, May 28-29, 2018, Gothenburg, Sweden

M. U. Iftikhar and D. Weyns. 2012. A Case Study on Formal Verification of
Self-Adaptive Behaviors in a Decentralized System. In Proc. 11th International
Workshop on Foundations of Coordination Languages and Self Adaptation, FO-
CLASA 2012 (EPTCS), N. Kokash and A. Ravara (Eds.), Vol. 91. 45-62.

P. Inverardi, P. Pelliccione, and M. Tivoli. 2009. Towards an assume-guarantee
theory for adaptable systems. In Software Engineering for Adaptive and Self-
Managing Systems, 2009. SEAMS’09. ICSE Workshop on. 106-115.

A. Klarl. 2015. Engineering Self-Adaptive Systems with the Role-Based Architec-
ture of Helena. In 2015 IEEE 24th International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises. IEEE, 3-8.

M. Lochau, S. Mennicke, H. Baller, and L. Ribbeck. 2014. DeltaCCS: A Core Calculus
for Behavioral Change. Springer Berlin Heidelberg, 320-335.

R. Milner. 1989. Communication and concurrency. Prentice Hall.

L. Pasquale, C. Ghezzi, C. Menghi, C. Tsigkanos, and B. Nuseibeh. 2014. Topol-
ogy Aware Adaptive Security. In Proc. 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. ACM, 43-48.

D. Sangiorgi and D. Walker. 2001. The Pi-Calculus - a theory of mobile processes.
Cambridge University Press.

B. Scattergood. 1998. The semantics and implementation of machine-readable CSP.
Ph.D. Dissertation. Citeseer.

A. Schmitt and J.-B. Stefani. 2004. The Kell Calculus: A Family of Higher-Order
Distributed Process Calculi. In Global Computing, IST/FET International Workshop,
GC 2004, Rovereto, Italy, March 9-12, 2004, Revised Selected Papers (Lecture Notes in
Computer Science), C. Priami and P. Quaglia (Eds.), Vol. 3267. Springer, 146-178.
A. Schroeder, S. S. Bauer, and M. Wirsing. 2011. A contract-based approach
to adaptivity. Journal of Logic and Algebraic Programming 80, 3-5 (apr 2011),
180-193.

C. Tsigkanos, L. Pasquale, C. Ghezzi, and B. Nuseibeh. 2017. On the Interplay
Between Cyber and Physical Spaces for Adaptive Security. IEEE Transactions on
Dependable and Secure Computing PP, 99 (2017).

J. Zhang and B. H. C. Cheng. 2006. Model-based development of dynamically
adaptive software. In Proceeding of the 28th international conference on Software
engineering, ICSE "06. ACM Press, 371.

Y. Zhao, D. Ma, J. Li, and Z. Li. 2011. Model Checking of Adaptive Programs
with Mode-extended Linear Temporal Logic. In 2011 Eighth IEEE International
Conference and Workshops on Engineering of Autonomic and Autonomous Systems.
IEEE, 40-48.

