
Monitoring Fuzzy Temporal Requirements for Service Compositions: Motivations,
Challenges and Experimental Results*

Liliana Pasquale
Lero - Irish Software Engineering Research Ceneter

University of Limerick, Limerick (Ireland)
Email: liliana.pasquale@lero.ie

Paola Spoletini
Università dell’Insubria

via Ravasi, 2 – 21100, Varese (Italy)
Email: paola.spoletini@uninsubria.it

Abstract—Service compositions are an important family of
self-adaptive systems, which need to cope with the variability of
the environment (e.g., heterogeneous devices, changing context),
and react to unexpected events (e.g., changing components) that
may take place at runtime. To this aim, it is fundamental to
continuously assess requirements while the system is executing
and detect partial mismatches or handle uncertainty. Detecting
the entity of a violation is very helpful, since it can guide the
way applications adapt at runtime. This paper is based on the
FLAGS language we already proposed in our previous work to
represent requirements as fuzzy temporal formulas and identify
partial violations at the temporal level. The paper illustrates
the advantages of using the FLAGS language to express the
requirements of service compositions, and proposes a technique
to monitor them at runtime. The experimental evaluation
demonstrates that the monitoring technique is feasible and the
overhead introduced in the running system is negligible.

Keywords-Fuzzy Goals, Requirements Monitoring, Service-
Compositions, Self-Adaptive Systems

I. INTRODUCTION

Service compositions require to be flexible and adaptable
to cope with the variability of the environment where they
are executed. The adoption of different devices, such as
GPS, sensors, or smartphones, the ephemerality of service
components, and the modifications of the context (e.g.,
location, user preferences, etc.), just to mention a few, are
some factors of variability. In this scenario, requirements
violations or context changes may take place unexpectedly
while compositions are executing. For this reason, contin-
uous monitoring is fundamental to detect these changes
and apply proper reactions accordingly. Adaptation can
be performed, for example, by reconfiguring the service
components that can be discovered and composed at runtime.

Monitoring results are oftentimes uncertain, due to the
imprecision of data collected by sensors, or the mismatch
between the representation of requirements and the real
users’ preferences. Requirements have been traditionally
associated with a crisp semantics (“yes” or “not”) and are
often expressed in LTL (Linear Temporal Logic). However,
a crisp semantics is not flexible enough and does not allow
us to represent partial mismatches or handle uncertainty. It

* Supported, in part, by Science Foundation Ireland grant 03/CE2/I303 1

does not provide any information regarding how much a
requirement has been violated and, indeed, it does not give
any insight regarding how a composition must adapt. For all
these reasons, we are convinced that different semantics and
monitoring capabilities must be investigated to express and
assess requirements.

This paper is based on a fuzzy temporal language, the
FLAGS language [1], which we have already proposed
in our previous work. FLAGS extends traditional LTL by
adding new operators to express transient/small violations
in the temporal domain. This allows us to monitor partial
deviations that can take place, for example, when an event
happens a little bit later than expected, a property is al-
ways satisfied except for a small set of time instants, or
a property is not maintained for a desired time interval.
The contribution of this paper is to demonstrate how the
FLAGS language can represent the requirements of service
compositions and handle their uncertainty. We propose a
technique to monitor the FLAGS requirements at runtime
and explain the challenges faced to minimize the over-
head given by monitoring fuzzy temporal formulas. The
experimental evaluation demonstrates that the monitoring
technique is feasible and the time to asses fuzzy formulas
is comparable to that necessary to check LTL properties.

This paper is organized as follows. Section II introduces
the FLAGS language. Section III explains the optimization
technique to improve the monitoring performance. Sec-
tion IV describes the implementation and the performance
of the monitoring framework. Section V illustrates related
work and Section VI concludes the paper.

II. THE FLAGS LANGUAGE

This Section illustrates an example that motivates the
adoption of the FLAGS language and introduces the syntax
and semantics of the language.

A. Motivating Example

To demonstrate the potentiality of the FLAGS language
we examplify its usage on GetStream, a service based
application that provides videos in streaming offered by
different providers. In this case the context includes the user

location, and the kind of video that can be live (e.g., a live
soccer match) or registered (e.g., a movie). For example, if
we consider the scenario in which a customer usesGetStream
to watch a live soccer game. He/she prefers not to have
interruptions of the video during the whole match and can
also tolerate a limited number of interruptions provided that
they are isolated and quite far-between. Interruptions may
be concretely represented as delays in the transmission rate
(rate) of the required video. This way, GetStream must
satisfy the following requirements.

R1. The transmission rate must be always comprised
between minrate and maxrate (Kb/s) for all the duration
of the match. The sooner an interruption takes place, the
worse the violation will be.

R2. The transmission rate cannot be less than minrate
(Kb/s) for more than a few number of times.

R3. Every time the transmission rate becomes less than
minrate Kb/s, it must return to its normal values (rate ∈
[minrate,maxrate]) almost within 1 minute. The longer an
interruption takes, the worse the violation will be.

Assessing the satisfaction level of requirements may pro-
vide great insight about the adaptation action to select. For
example, if interruptions happen during the first-half of the
match (i.e., the satisfaction of R1 is low), GetStream may
decide to contact another provider of the video. In case
violations persist, GetStream may suggest the nearest bar,
in the radius of 1 km, in which the match is transmitted, if
possible. On the other hand, if interrruptions happen during
the last minutes of the match (i.e., the satisfaction R1 is quite
high) and the other requirements are violated, GetStream
may consider more convenient to switch to a “play-by-play”
description instead of using another provider of the video.
As a matter of facts, it is not convenient to increase the
provisioning costs, by contacting another provider, just to
show the last minutes of the match.

B. The Language

The FLAGS language expresses requirements as fuzzy
temporal formulas and assigns to them a satisfaction de-
gree comprised between 0 and 1. Traditional FLTL (Fuzzy
Linear Temporal Logic) [2] cannot embed the vagueness at
the temporal level to express, for example, properties that
must be verified “almost always”, “within around t time
instants”, “always except for at most some x cases”. The
FLAGS language adds new fuzzy temporal operators and
modifies the semantics of existing operators to overcome
this limitation.

The grammar of the language is presented below 1.

ϕ ::= G ϕ | F≤ t ϕ | G•t ϕ | G−x ϕ | ϕ U ϕ |
Lt ϕ | Wt ϕ | ϕc | πf

1• ∈ {<,>,≥,≤}

πf ::= ϕ f ϕ | ∼ ϕ | expr Fconn expr
Fconn ::= � | ≺ | � | � | ≈ | 6≈
ϕc ::= Gϕc | G•t ϕc | Fϕc | F•t ϕ |
ϕc U ϕc | X t ϕc | πc
πc ::= πc ∧ πc | ¬ πc | expr Cconn expr
Cconn ::= < | > | ≥ | ≤ | = | 6=
expr ::= const | var | expr op expr
op ::= + | − | ∗ | /

ϕ is a fuzzy temporal formula (see operators G, F≤t, G•t,
G−x, U , Lt, Wt), a crisp temporal formula (ϕc) or a fuzzy
untimed formula (πf). Terminals const and var represent
respectively a constant value and a variable. A crisp temporal
formula (ϕc) follows the classical LTL syntax and can
be associated with bounded/unbounded temporal operators,
such as “always in the future” (G), “eventually in the future”
(F), and boolean connectives (e.g., “and” (∧), and “not” (¬)).

As originally proposed by Zadeh [3], the semantics of a
proposition is expressed through a membership function (µ)
that assigns a degree of truth (codomain, y ∈ [0, 1]) to it.
The semantics of fuzzy relational operators (�, ≺, �, �, ≈,
6≈) assigns a degree of satisfaction between 0 and 1 to those
propositions that do not fully respect the condition, but are
close to it. For example, x ≈ 0 is absolutely true for the
points close to 0 ([−1, 1]), has a degree of truth between
0 and 1 in the points near 0 (e.g., [−4,−1) ∪ (1, 4]), and
is absolutely false elsewhere. Ragarding fuzzy connectives,
possible semantics for operators not (∼), and (f), and or
(g) are shown respectively in equations 1, 2 and 3.

µ(∼ π) = 1− µ(π) (1)
µ(π1 f π2) ≡ min(µ(π1), µ(π2)) (2)
µ(π1 g π2) ≡ max(µ(π1), µ(π2)) (3)

The semantics of some of (fuzzy/crisp) temporal operators
is intuitively expressed in natural language in Table I2.
Note that each crisp operator is associated with its fuzzy
counterpart, when possible.

Crisp op NL expr Fuzzy op NL expr
G Always G Almost always

- - G−x Almost always except
at most some x cases

F<t Within t F<t Almost within t

- - Wt Almost within around
at most t instants

Table I
TEMPORAL OPERATORS.

According to the traditional semantics of fuzzy temporal
operators [2], evaluating F<t ϕ at an instant i is equivalent to

2For reasons of space this paper just describes the semantics of the
operators used to express the requirements of the example. Interested
readers can refer to [4] for a complete description of all operators.

finding the most satisfactory truth value of ϕ in the interval
[i, i + t). This interpretation may be not satisfactory when
ϕ has an high value of truth for a time instant t′ slightly
greater than i + t. For example, for R3 we may want to
tolerate those situations in which the transmission rate takes
a bit more than 1 minute to return to its normal range. For
this reason, we added operator Wt to the FLAGS language.

Wtϕ = gt′(fEval(ϕ, t
′) ∗ µWt(t

′)), t′ ∈ [i, i+ w)

As shown above, Wt evaluates a formula ϕ for a time
interval ([i, i + w]) a little bit longer than t, and weights
each evaluation of its argument at instant t′ by the value
of the membership function µWt at the same instant. This
membership function is evaluated on the offset between the
current instant (t′) and i. In particular, µWt

(t′) is equal to
1 when t′ ∈ [i, i+ t) and decreases to 0 when t′ ≥ (i+ t),
as shown in Figure 1(a) where we assume i = 0. This way
we can express R3 as follows:

rate < x =>W60(r � minrate f r ≺ maxrate)

where the membership function µW60 is positive in the
interval [i, w) (w > i+ 60).

1

timet0

(a) Memb. function µW .

0

1

errors

(b) Memb. function µG .

Figure 1.

According to the literature [2], the fuzzy temporal opera-
tor G ϕ is computed by finding the less satisfactory value
of ϕ. This implies that if the truth value of ϕ becomes
completely false (equals 0) for a certain time instant, due
to a transient violation, G becomes 0, exactly like in the
crisp case. Hence, this interpretation for operator G does
not allow us to tolerate transient violations. For this reason,
we use a different semantics: when the truth value of ϕ
is under a certain threshold (thmin), it is not taken into
account in the evaluation of G. Instead, it is replaced by a
satisfaction value, computed by a membership function (µG),
that depends on the number of past violations (i.e., the truth
value of ϕ is less than thmin). The membership function
µG returns a truth value that is inversely proportional to the
number of violations already occurred (# errors), as shown
in Figure 1(b).

The semantics of operator Gϕ is formally described by
the recursive function shown below.

Function fEval uses an auxiliary function (val1) that
takes sub-formula ϕ, on which G is applied, instant i at
which the formula is computed, and a violation counter

fEval(Gϕ, i) = val1(ϕ, i, 0)

float val1(ϕ, i, error){
if(fEval(ϕ, i) < thmin){

error ++;

if(µG(error) == 0) return 0;

else return
µG(error)

µG(error−1)
∗ val1(ϕ, i+ 1, error); }

else return fEval(ϕ, i) ∗ val1(ϕ, i+ 1, error)}

(error) that is initialized to 0. Every time a violation occurs,
error is incremented. If the updated value of error makes
µG return a value equal to 0, it means that Gϕ has a
truth value equal to 0 (return 0). Otherwise, the current
truth value of Gϕ is multiplied by factor µG(error)

µG(error−1) . Note
that if no violation occurs, the truth value of ϕ (given by
fEval(ϕ, i)) directly affects the final evaluation of Gϕ.

This new definition allows us tolerate some transient
problems, such as a certain number of interruptions during
the transmission of the match and, indeed, we can represent
R2 as follows:

G(rate > minrate)

III. MONITORING

Many approaches [5]–[7] have been already proposed to
monitor service compositions. For untimed formulas (e.g.,
properties expressed in propositional logic), monitoring re-
sults can be produced instantaneously, as soon as data col-
lection is performed, with a negligible delay on the running
system. Conversely, the evaluation of temporal formulas at
a specific time instant (i) cannot be performed instanta-
neously, since some necessary data will be only available at
subsequent time instants with respect to i. For this reason,
monitoring results cannot be produced “on-the-fly” and the
monitoring procedure may add considerable overhead on
the system. Bounded temporal operators (such as, F•t, F<t,
G•t, G•t, Lt, Wt)3 require a limited temporal window to be
evaluated, when they do not include any future operator as
argument. Instead, for unbounded temporal operators only
temporary results can be provided, since the monitoring
procedure must be theoretically performed over an infinite
temporal window.

The number of threads used to evaluate a temporal
formula may grow when it includes a set of temporal
sub-formulas. For example, if we consider requirement R1
((rate < minrate) ⇒ W<60(rate > minrate)), every
time the antecedent is satisfied, a new thread is created to
evaluate temporal sub-formula W60(. . .). If the antecedent
is satisfied every time instant, we will have at most 60 active
thread instances at the same time that evaluate sub-formula
W60(. . .). This problem seems even more complex when
we deal with unbounded operators that can never terminate

3• ∈ {≤, <}

and may depend on other infinite threads that evaluate their
sub-formulas at the same time. If the number of threads is
too high, the overhead introduced in the system, in terms of
time and memory consumption, may make the monitoring
procedure unfeasible. Besides, fuzzy temporal operators
provided by FLAGS further increase the complexity of the
whole monitoring procedure. Every time a fuzzy temporal
formula is evaluated, it is also necessary to aggregate the
partial results of its sub-formulas.

The implementation of a monitor to evaluate each tempo-
ral operator is straightforward, since it can be easily derived
from the operational semantics partially described in the
previous section. On the other end, finding a technique to
reduce the number of threads used during the evaluation
of temporal operators is not simple and a solution that is
semantically sound and practically feasible is required to
solve this problem.

A. Monitoring crisp operators

Our optimization technique is based on the ideas that have
been already proposed in [8] to optimize the monitoring of
crisp temporal operators. This section briefly recaps these
ideas, while the next section explains which optimizations
can be performed to monitor fuzzy temporal operators.

Our optimization technique is based on the following
assumptions:
• The satisfaction of temporal formulas is measured by

a thread that is active during the temporal window in
which the argument of the formula must be evaluated.

• The threads that evaluate a temporal formula update the
(temporary) monitoring result only when at least one of
the necessary variables changes its value.

• Each sub-formula is associated with a flag that indicates
whether an active thread which evaluates that sub-
formula already exists. For a subset of the temporal
operators this flag is used to prevent the generation of
multiple threads for the same sub-formula.

• If a temporary monitoring result is already available and
the variables included in the formula to be evaluated do
not change their value, the monitoring result continues
to keep the same value.

All formulas that have G and F (both bounded and
unbounded) as the most external operators do not require
more than one active thread to be evaluated. Indeed, once
operator G needs to be verified, its thread remains active
until the argument of the formula (and, consequently, the
whole formula) becomes false. In the meanwhile, if another
occurrence of the same formula needs to be checked at a
subsequent instant of time, it can rely on the same thread
previously created. Symmetrically, the thread that evaluates
operator F remains active until its argument becomes true.
If in the meanwhile another instance of the same formula
needs to be evaluated, the same thread can be used. The
same rule is applied to monitor unbounded operators G>t

and F>t, with the only difference that their evaluation is
delayed of t time instants.

Bounded versions of temporal operators may also require
a single thread. As a matter of facts, in case an instance of
G<t (and G≤t) is already active and another one is required
to be evaluated at the current time instant, we do not need to
create a new thread. Instead, the existing thread just enlarges
the temporal window during which the formula is evaluated.

Optimizing operator F≤t (and F<t) is more tricky. We can
use a single monitor only when we want to stop the monitor-
ing procedure after the first error occurs. For example, if we
are monitoring a critical property, we may be just interested
to detect the first violation of the corresponding formula to
apply an adaptation. In this case, we can use only one thread
to monitor several instances of this operator that start at
different time instants. For example, if we take into account
formula F<10A and evaluate it at instants i and i+3, we can
have three possibilities. If A is satisfied between (i, i + 3]
we have just 1 thread since the thread that evaluates the first
instance of the formula terminates just before the second
one starts. In case A is satisfied in (i + 3, 10] the thread
that evaluates the first formula is also used to evaluate the
second one. We do not take into account the case when A
is satisfied in [i + 10, i + 13] since, in this case, the first
instance of the formula has been already violated. All these
assumptions cannot be applied when we prefer to count the
number of errors since, in this case, a separate thread must
be used to evaluate different instances of the same formula.

B. Monitoring fuzzy operators

The semantics of fuzzy temporal operators is given by
accumulating or filtering all the evaluations of their argument
during a limited/unlimited temporal window. Since each
instance of the same fuzzy temporal operator depends on
a different temporal window, it requires a different thread to
be evaluated. However, as we will demonstrate in Section IV,
monitoring fuzzy temporal operators is still feasible in
practice, even if no optimization can be applied.

To evaluate temporal operators G (and analogously G−x)
it is necessary to accumulate the satisfaction value of the
argument at each time instant, and scale it depending on the
errors that already occurred. If an active thread that checks
an instance of this formula already exists and another one has
to be checked, a new thread must be created. The new thread
cannot reuse the partial monitoring result already computed
by the previous thread, since it accumulates all satisfaction
of its argument starting from value 1. The previous thread
is reused only when no errors happened and the temporary
monitoring result is still equal to 1. The bounded versions
of the previous operators (G<t and G≤t) suffer of a similar
problem.

The evaluation of operator F<t (and F≤t) is equal to
the maximum value of its argument during a time window
of length t. If more than one instance must be checked, a

single thread is enough only if during the intersection of the
different time windows the argument is evaluated to 1 or to
the maximum value for all temporal windows considered
separately. However this optimization is not feasible in
practice, since the maximum value of the argument in the
different temporal windows cannot be known in advance.

Operator Wt also depends on the time instant in which
the formula is evaluated. The thread that checks this operator
accumulates all evaluations of the corresponding argument
during a temporal window and uses a membership function
to scale it depending on the time instant in which the check
is performed. Since different instances of the same formula
are started at different time instants, they use different
membership functions to weight the evaluation of their
argument and their results are totally independent. For this
reason, yet again, separate threads must be used.

IV. IMPLEMENTATION AND EVALUATION

This section describes the implementation of the moni-
toring framework and illustrates its performance when both
crisp and fuzzy temporal formulas are evaluated.

A. Implementation of the Monitoring Framework

The architecture of the monitoring framework is shown
in Figure 2. The Monitor is devoted to evaluate the formu-
las expressed in the FLAGS language. The Configuration
Manager directly interacts with the designer of the system
(who defines the requirements), and sends the corresponding
FLAGS formulas to the Monitor (1). The Data Collector
collects the data coming from the Execution Environment
(2.a) and notifies the Monitor in case changes have taken
place (2.b). The Monitor retrieves the modified data (2.b)
and re-evaluates the formulas (2.c), if necessary. When the
framework is started, the Monitor receives a set of data that
represent the initial conditions of the system.

Execution
Environment

Monitor

Data
Collector

Configuration
Manager

Formulas
1 2.b

2.a

2.c

Figure 2. The architecture of the monitoring framework.

The Monitor creates a different thread depending on
the operator that must be evaluated. In case a temporal
formula includes other temporal subformulas, the thread
that evaluates the most external operator also decides when
and how create other threads according to the optimizations
presented in Section III. We used Xtext [9] to define the

syntax of the FLAGS language. Xtext allows us to automat-
ically derive a parser that recognizes a FLAGS formula and
generates its corresponding AST (Abstract Syntax Tree). We
implemented a visitor that traverses the AST and generates
the threads that will check the formula at runtime.

To express fuzzy temporal formulas it is also necessary
to provide information regarding the shape of the mem-
bership functions. We assumed that membership functions
always have a triangular/trapezoidal shape and interpolate
the preferences of the users expressed in a questionnaire.
We provide a graphical tool that allows users to fill the
questionnaires (see Figure 3(a)) and analyzes the users’
answers to generate a membership function that represents
them (see Figure 3(b)).

(a) User questionnaiers

(b) Generated membership function

Figure 3.

B. Performance Evaluation

We evaluated the performance of the monitoring frame-
work by computing the time and number of threads created
to check both crisp and fuzzy formulas. We simulated the
Data Collector through a suitable thread that updates the
values of the variables necessary to produce the monitoring
results and notifies the Monitor that, in its turn, re-evaluates
the formulas. All experiments have been performed on a
PC with processor x86 dual core, 4GB RAM and operative

system Windows 7. For all experiments each time instant is
equivalent to 1 millisecond.

The first experiments are aimed to assess the concrete
benefits of the optimization technique (expecially in the
crisp case) on the whole performance. We expressed the
same formulas with crisp and fuzzy operators to compare
the overhead generated for their evaluation. We can notice
that, despite the number of threads created for the evalu-
ation of these formulas is higher when no optimization is
applied, the response time still maintains acceptable values
that are comparable with the theoretic ones. We used the
same history (i.e., sequence of data) for each couple of
experiments. For operator “Eventually” (fuzzy and crisp)
the evaluation terminates after a time threshold specified in
advance or as soon as its argument becomes true. While for
operator “Always” we selected an history able to make the
formula false after a certain time threshold. As expected, the
evaluation of crisp formulas generates less threads than their
fuzzy counterpart. Furthermore, fuzzy formulas have higher
delays compared to the theoretical one (e.g., the highest
delay is 379 milliseconds).

We performed other experiments to measure the number
of threads created while crisp and fuzzy temporal opera-
tors are evaluated over long time intervals. To this aim,
we compared the perfomance obtained to monitor a crisp
(G(G(s < 100))) and a fuzzy formula (G(G(s < 100)))
that adopt unbounded operators. In Figure 4 we can observe
that the increasing side of the graph represents the phase in
which threads are generated to evaluate the formula, while
the decreasing side represents the phase when threads are
eliminated after some variables change their value and some
threads are not necessary anymore. Every time data change
all threads that are not necessary are deleted. As expected,
the number of threads created to evaluate the crisp formula
is less than the number of threads needed to evaluate its
fuzzy counterpart. In the crisp case the maximum number
of threads is 300 (at instant 351), while in the fuzzy case it
is greater than 2500 (at instant 497).

Figure 4. Number of threads created over time

Note that these results are highly influenced by the
formula adopted in the experiments. However, in real cases

requirements are expressed as simple formulas that do not
have many inner sub-formulas. For this reason, the situations
in which the number of active thread is too high are
negligible. Generally we can claim that monitoring fuzzy
requirements at runtime is feasible since it introduces an
overhead, in terms of monitoring time, that is slightly greater
than that measured to monitor crisp formulas.

V. RELATED WORK

The idea of monitoring requirements was originally pro-
posed by Fickas et al. [10]. The authors claim that re-
quirements monitoring is necessary to know when and how
the system has to evolve in case requirements assumptions
become not valid. Feather et al. [11] improve this idea ex-
pressing monitoring requirements as temporal combinations
of events that can be translated into monitoring code.

Robinson [7] provides a framework, ReqMON, to verify
requirements on web services. It distinguishes between the
design-time model, where business goals and their possible
obstacles are defined, and the runtime model, where logical
monitors are derived from the obstacles and are applied onto
the running system. Monitors are represented in terms of
LTL formulas. Conversely, our approach directly monitors
requirements that are expressed as fuzzy formulas. It also in-
fers logical monitors, that evaluate requirements at runtime,
directly from the definition of requirements.

Wang et al. [12] propose a solution for monitoring system
requirements, but are more interested in diagnosing the cause
of requirements violations. Requirements are represented
through a TROPOS model augmented with pre- and post-
conditions that can be associated with goals or tasks to
indicate the constraints that must be fulfilled before and after
a goal is satisfied or a task is successfully executed. The
authors also tune the monitoring granularity by adopting
suitable switches that indicate whether the corresponding
goal/task is to be monitored. Differently from our approach,
requirements monitoring is not performed at runtime and
log data are used to infer the denial of requirements and
detect problematic components. Diagnosis is reduced to a
satisfiability problem (SAT) that identifies what can be the
causes (i.e., which leaf goal has failed) of a higher level goal
to be not satisfied.

Souza et al. [13] introduce the concept of awareness
requirements that may refer to the success/failures of other
requirements or concerned with the truth/falsity of a domain
assumption. The main advantage of this approach is to
introduce linguistic constructs for expressing requirements
and temporal operators. For example, requirements can
represent: success/failure of other requirements, aggregate
values (e.g., success/failure rate or min/max success/failure
of other requirements), or a trend of another requirement
over a temporal period. This really eases the designer task
that do not have to specify them manually. However the

Table II
PERFORMANCE COMPARISON BETWEEN CRISP AND FUZZY OEPRATORS.

Formula Theoretical monitoring time (ms) Monitoring time (ms) # Threads

G(Gltl(b > 85)) 120000 120175 3

G(G(b > 85)) 120000 120213 121

F20(F20(F20(b < 85))) 76000 76116 7

F20(F20(F20(b < 85))) 76000 76379 8421

authors do not address uncertainty and requirements are still
represented in LTL (OCLTM).

VI. CONCLUSIONS

This paper describes the FLAGS languages to express
requirements for service compositions. It fuzzyfies the tem-
poral domain and allows us to express uncertain temporal
properties. It provides a motivating example, a monitoring
technique to assess FLAGS formulas at runtime, and justifies
the viability of the approach through some experiments.

However our approach has some drawbacks. The FLAGS
language is not intuitive: common users cannot specify their
requirements directly and the intervention of the system
designer is necessary. We just overcome this limitation for
the definition of membership functions, that are generated
by interpolating the answers given by the users to a ques-
tionnaire. This solution is not completely satisfactory and
a mechanism that allows users to easily define FLAGS
requirements, while hiding the complexity of the language,
is still missing.

REFERENCES

[1] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy Goals for
Requirements-Driven Adaptation,” in Proc. of the 18th Int.
Req. Eng. Conf., 2010, pp. 125–134.

[2] K. Lamine and F. Kabanza, “Using Fuzzy Temporal Logic
for Monitoring Behaviour-based Mobile Robots,” in Proc. of
IASTED Int. Conf. on Robotics and Applications, 2000, pp.
116–121.

[3] L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8,
no. 3, pp. 338–353, 1965.

[4] L. Pasquale, “A Goal Oriented Methodology for Self-
Supervised Service Compositions,” Ph.D. dissertation, Po-
litecnico di Milano, 2011.

[5] L. Baresi and S. Guinea, “Self-Supervising BPEL Processes,”
IEEE Trans. on Softw. Eng., vol. 37, no. 2, pp. 247–263, 2011.

[6] G. Spanoudakis and K. Mahbub, “Non-intrusive monitoring
of service-based systems,” Int. J. Cooperative Inf. Syst.,
vol. 15, no. 3, pp. 325–358, 2006.

[7] W. Robinson, “A Requirements Monitoring Framework for
Enterprise Systems,” Req. Eng., vol. 11, pp. 17–41, 2006.

[8] L. Baresi, D. Bianculli, S. Guinea, and P. Spoletini, “Keep
It Small, Keep It Real: Efficient Run-Time Verification of
Web Service Compositions,” in Proc. of the Int. Joint Conf.
FMOODS/FORTE, 2009, pp. 26–40.

[9] “Xtext Language Development Framework,” http://www.
eclipse.org/Xtext/.

[10] S. Fickas and M. S. Feather, “Requirements Monitoring in
Dynamic Environments,” in Proc. of the 2nd Int. Symposium
on Req. Eng., 1995, pp. 140–147.

[11] M. S. Feather, S. Fickas, A. Van Lamsweerde, and C. Ponsard,
“Reconciling System Requirements and Runtime Behavior,”
in Proc. of the 9th Int. Workshop on Softw. Spec. and Design,
1998, pp. 50–59.

[12] Y. Wang, S. A. Mcilraith, Y. Yu, and J. Mylopoulos, “Mon-
itoring and Diagnosing Software Requirements,” Automated
Softw. Eng., vol. 16, no. 1, pp. 3–35, 2009.

[13] V. E. Silva Souza, A. Lapouchnian, W. N. Robinson, and
J. Mylopoulos, “Awareness Requirements for Adaptive Sys-
tems,” in Proc. of the 6th Int. Symposium on Softw. Eng. for
Adaptive and Self-managing Systems, 2011, pp. 60–69.

