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Abstract—Self-adaptation is imposing as a key characteristic
of many modern software systems to tackle their complexity
and cope with the many environments in which they can
operate. Self-adaptation is a requirement per-se, but it also
impacts the other (conventional) requirements of the system;
all these new and old requirements must be elicited and
represented in a coherent and homogenous way. This paper
presents FLAGS, an innovative goal model that generalizes
the KAOS model, adds adaptive goals to embed adaptation
countermeasures, and fosters self-adaptation by considering
requirements as live, runtime entities. FLAGS also distinguishes
between crisp goals, whose satisfaction is boolean, and fuzzy
goals, whose satisfaction is represented through fuzzy con-
straints. Adaptation countermeasures are triggered by violated
goals and the goal model is modified accordingly to maintain a
coherent view of the system and enforce adaptation directives
on the running system. The main elements of the approach are
demonstrated through an example application.
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I. INTRODUCTION

Self-adaptation is becoming a key feature of many soft-
ware systems to tackle their increasing complexity and cope
with the environments in which they are deployed. Systems
must (self-)adapt because of new business needs, but also
because of the volatility of their environments, which may
lead to violating some requirements satisfied at deployment
time. Many approaches [1], [2] have already tried to embed
self-adaptation capabilities in existing systems or add them
to new ones, but only few attempts [3], [4] have addressed
this problem from the beginning. Adaptation capabilities
should be identified as requirements per-se and must be
related to the other, “conventional”, requirements of the
system. This allows us to identify which requirements need
a specific adaptation when they are not fulfilled satisfac-
torily and guarantee that adaptations are coherent with the
expectations of the stakeholders.

To address these issues, the paper presents FLAGS (Fuzzy
Live Adaptive Goals for Self-adaptive systems), which is
an innovative goal model able to deal with the challenges
posed by self-adaptive systems. Goal models have been used
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for representing systems’ requirements, and also for tracing
them onto their underlying operationalization. However,
goals do not directly address adaptation. To do this, one
should describe how goals cope with changes and how they
can modify themselves and, if needed, the whole goal model.

FLAGS generalizes the basic features of the KAOS
model [5] (i.e., refinement and formalisation), and adds the
concept of adaptive goal. These goals define the counter-
measures that one must perform if one or more goals are
not fulfilled satisfactorily. Each countermeasure produces
changes in the goal model. Countermeasures may prevent
the actual violation of a requirement, enforce a particular
goal, or move to a substitute one. The selection at runtime
depends on the satisfaction level of related goals and the
actual conditions of the system and of the environment.
As for goals’ satisfaction, a crisp notion (yes or no) would
not provide the flexibility necessary in systems where some
goals cannot be clearly measured (soft goals), properties
are not fully known, their complete specification —with all
possible alternatives— would be error-prone, and small/tran-
sient violations must be tolerated. This is why, besides crisp
goals, we also propose fuzzy goals, specified through fuzzy
constraints, that quantify the degree x (x ∈ [0, 1]) to which
a goal is satisfied/violated.

Moreover, goal models have been traditionally conceived
as design-time abstractions, but this is not enough if we
think of runtime changes and we want to keep the running
system aligned with its business requirements. If we want
to pursue the alignment between requirements and runtime
entities, and we want to delegate decisions about adaptation
to the goal model, we need to turn goals into live entities,
as originally proposed by Kramer and Magee [6]. The idea
is that the runtime infrastructure [7], not presented in this
paper, feeds the goal model and triggers changes in its parts.
These changes are translated into actual adaptation directives
onto the running system.

This paper focuses on the description of fuzzy and adap-
tive goals; it only provides a general overview of how
these goals can be handled as runtime abstractions. These
concepts are exemplified through a simple laundry system
that controls a set of washing machines. The system must
decide how to use the different machines, select washing



programs, and activate washing cycles. The overall goal is
to minimize energy consumption while accomplishing all
tasks. The paper is organized as follows. Section II motivates
our approach, and introduces the laundry system example.
Section III illustratess the syntax and semantics of the lan-
guage adopted to formalize fuzzy goals. Section IV describes
adaptive goals and Section V explains the reasons why goals
must be runtime abstractions. Section VI discusses related
proposals and Section VII concludes the paper.

II. OVERALL APPROACH

This section introduces our approach and the motivations
behind it through a simple laundry system. The aim is to
introduce the key elements and also highlight the reasons
why we decided to extend KAOS.

Figure 1 presents a KAOS model of the laundry system.
The general objective of the system is to wash clothes (goal
G1), which is AND-refined into the following subgoals:
setup the washing machine (goal G1.1), complete a washing
cycle (goal G1.4), consume a small amount of energy (goal
G1.2) and keep the number of clothes that remain to be
washed low (goal G1.3). The setup of a washing machine
requires that clothes be inserted in the drum (goal G1.1.1),
powder be added (goal G1.1.2), a washing program be
selected (goal G1.1.3), and the washing machine be ready
(goal G1.1.4). The completion of a washing cycle requires
that the selected program be started (goal G1.4.1) and that
the washing machine be emptied when it terminates the
execution (goal G1.4.2).

Goals G1.2 and G1.3 are soft goals since there is not
a clear-cut criterion to decide whether they are satisfied
or not, that is, whether the energy consumption is “small”
or the number of dirty clothes is “low”. For this reason,
these goals can only be partially fulfilled. Goal G1.3 is
also in conflict with goal G1.2 (see the dotted line in
Figure 1) since reducing the number of dirty clothes may
imply the execution of more washing programs and thus
more energy. Conflicting goals are usually associated with
different priorities. In our case, goal G1.3 has a higher
priority (p = 4) than goal G1.2 (p = 2), since reducing the
amount of dirty clothes is more important than constraining
energy consumption.

These goals use the following entities: WashingMa-
chine(id, program, powder, drumEmpty, washDuration, sens,
state: {default, free, selected, ready, washCompleted}),
Program(name, duration), EnergyUnits(units), and Dirty-
Clothes(amount). As for events, we have program selected,
which signals that a program is selected for a washing ma-
chine, and start program, which indicates that a particular
program has just started on a washing machine.

KAOS allows one to formalize goals in LTL (Linear
Temporal Logic, [8]). For example, Table I presents the
formalization of the goals introduced for the example1.

1Operator @ has the following meaning [5]: @P ≡ •(¬P ) ∧ ◦P

Goal Formal definition

G1.1.1 wm : WashingMachine,
@(wm.state = selected)⇒ ♦t<x(¬wm.drumEmpty)

G1.1.2 wm : WashingMachine,
@(wm.state = selected)⇒ ♦t<y(wm.powder)

G1.1.3 wm : WashingMachine, p : wm.program,
(p.name = “”) ∧@(wm.state = selected)⇒

♦t<z(wm.program 6= “”∧ p.duration > 0)

G1.1.4 wm : WashingMachine,
((wm.state = selected) ∧ (¬wm.drumEmpty)

∧(wm.program 6= “”) ∧ (wm.powder))⇒
◦(wm.state = ready)

G1.2 e : EnergyUnits, �(e.units ≤ EMAX)

G1.3 dc : DirtyClothes, �(dc.amount < 5)

G1.4.1 wm : WashingMachine, p : wm.program
@(wm.state = ready)⇒

♦t≤p.duration(@(wm.sens = “green ”)∧
@(wm.state = washCompleted))

G1.4.2 wm : WashingMachine,
(wm.state = washCompleted)⇒

♦(wm.program =“”∧wm.state = free∧
¬(wm.powder) ∧ ¬(wm.drumEmpty)

Table I
FORMALIZATION OF SOME EXAMPLE GOALS.

Goal G1.1.3 must be achieved when a washing machine
has been selected to perform a washing cycle but a washing
program has not been chosen yet. In this case, a washing
program must be selected and its duration must be set prop-
erly. This goal is achieved through operation Op3 [Select
Program] defined as follows2:

Name: Op3
In/Out: p : Program,wm :WashingMachine

DomPre: wm.state = selected
ReqPre: wm.program.name = “”
TrigPre: program selected(wid, p)
ReqPost: wm.program.name = p.name∧

wm.program.duration = p.duration∧
wid = wm.id

This operation is activated when a washing program is
selected for a particular washing machine (see TrigPre).
Parameter p of event program selected comprises the
selected washing program (p.name) and its corresponding
duration (p.duration). This information must be assigned to
the washing machine chosen to perform the washing cycle
(see ReqPost).

Goal G1.4.1 states that if a washing machine becomes
ready to perform a washing program (@(wm.state =
ready)), it must terminate it within a delay lower than that
specified in the program duration (wm.washDuration).
A program is completed when the sensor of the washing

2Operations are expressed in terms of their input/output entities (In-
/Out), domain preconditions (DomPre), domain postconditions (DomPost),
required preconditions (ReqPre), triggering preconditions (TrigPre), and
required postconditions (ReqPost).



Figure 1. The KAOS goal model of the laundry system.

machine becomes green (wm.sens = ′green′). This goal
is achieved through operation Op5 [Wash], which is defined
as follows:

Name: Op5
In/Out: wm :WashingMachine

DomPre: wm.state = ready
DomPost: wm.state = washCompleted

TrigPre: start program(wid, t) ∧ wm.id = wid
ReqPost: wm(t′).sens = “green”∧

∧ t′ − t < wm.program.duration

The operation changes the state of the washing ma-
chine from ready to washCompleted (see DomPre and
DomPost). This operation is triggered when a washing
program is started (event start program(wid, t)) for the
specified washing machine (wm.id = wid).

Goals G1.2 and G1.3 rely on the operations shown in
Figure 1 (i.e., Op1,..., Op6). To enforce the satisfaction
of these goals we must add the following required post-
conditions to each operation:

ReqPostG1.2: e.units < EMAX

ReqPostG1.3: dc.amount < 5

A. From KAOS to FLAGS

If we formalize goals in LTL, we can only assess whether
they are fulfilled or not, and there is no way to say “how
much” a goal is satisfied/violated. This may be sufficient
for hard goals, but it is not satisfactory for soft-goals that
can be satisfied up to a given degree, or when we need to
tolerate small violations. For example, LTL is good for goal
G1.1.3 since we are only interested in knowing whether a
program is selected in z time units. In contrast, the adoption
of LTL to formalize goal G1.4.1 would not be the best option
since we may want to tolerate the case in which the washing
machine terminates a program a bit later than expected
(@(wm.sens = “green”, at time z′ : z′ − z = ε). This
corresponds to considering these cases as “weak” violations.
Furthermore, if we were able to track the level of satisfaction
of soft goals, like G1.2 and G1.3, we would be able to

adjust the behavior of the system accordingly. For example,
since goal G1.2 (amount of energy consumed) and goal
G1.3 (washed clothes) are in conflict, one may try to find a
compromise between the two. The less critical requirements
(G1.2) can be relaxed more than critical ones (G1.3) to
provide viable solutions.

This is why FLAGS distinguishes between crisp and fuzzy
goals. The fulfillment of the former is boolean, while the
latter can be satisfied up to a certain level (x ∈ [0, 1]). Crisp
goals are rendered in LTL, while our proposal for fuzzy
goals is presented in Section III. These two types of goals
can easily coexist: crisp goals represent firm requirements,
while fuzzy goals are more flexible.

During requirements elicitation we must also define how
the system adapts itself at runtime. For example if goal
G1.4.1 is violated because the washing machine turns off
suddenly during a washing cycle, we must turn the washing
machine on again. We must also restore the system in a
state where the drum is already filled, the powder must be
added and the program set again. This is the goal that states
how the system should adapt itself by applying a suitable
countermeasure, and thus we call it adaptive goal. Each
countermeasure is associated with an event that triggers it
execution (goal G1.4 violated), a condition for its actual
activation (the washing machine turns off suddenly), an
objective it has to achieve (turn on the washing machine),
and a sequence of basic actions that must be performed on
the goal model, and the underlying system, to achieve the
objective.

III. CRISP AND FUZZY GOALS

This section presents the language we propose to specify
goals. Crisp goals are still defined in LTL, while fuzzy goals
use a fuzzy temporal language. The two options are unified
in a single language whose grammar is presented below3.

3As commonly done for LTL, we adopt the set of natural numbers as
temporal domain. Furthermore, since we suppose that crisp and fuzzy
untimed formulae are defined over finite domains, universal (∀) and
existential (∃) quantifiers can be added without augmenting the expressive
power of the language.



freq ::= Gfreq | F<tfreq | G•tfreq | G−xfreq |
freq U freq | treq | fprop
fprop ::= fprop f fprop | ∼fprop | expr comp expr
expr ::= const | var | expr op expr
comp ::= � | ≺ | � | � | ≈ | 6≈
op ::= + | − | ∗ | /

G•t ∈ {G<t,G≤t,G>t,G≥t}. freq is a fuzzy temporal for-
mula (see operators G, F<t, G•t, G−x, U), a crisp temporal
formula (treq) or a fuzzy untimed formula (fprop). const
represents a constant value and var indicates a variable.
Since crisp formulae are LTL expressions, there is no need
to further discuss them.

The semantics of the fuzzy language is inspired by the
theory of fuzzy sets, originally proposed by Zadeh [9]. It
adopts a membership function (µ) that assigns a degree of
truth (codomain, y ∈ [0, 1]) to each proposition. Possible
values are: absolutely true (1), absolutely false (0), or
an intermediate degree of truth (a value in (0, 1)). The
semantics of fuzzy relational operators (�, ≺, �, �, ≈, 6≈)
is shown in Figure 2(a); the corresponding crisp operators
are presented in Figure 2(b). Relational operators can be
described as impulse functions or one or more step functions.
For example, x = 0 is absolutely true only in 0, that is
the point in which the constraint is verified; it is absolutely
false in all the other points. Similarly x < 0 is absolutely
true in ] − ∞, 0[ and is absolutely false in [0,∞[. Fuzzy
relational operators use a smooth function to assign a degree
of satisfaction between 0 and 1 to those propositions that
do not fully respect the condition, but are close to it. For
example, x ≈ 0 is absolutely true for the points close to
0 ([−1, 1]), has a degree of truth between 0 and 1 in the
points near 0 (e.g., [−4,−1)∪(1, 4]), and is absolutely false
elsewhere. Note that give these definitions, crisp membership
functions are a special case of the fuzzy ones and can only
assume values 0 and 1. This means that fuzzy goals can be
considered a generalization of crisp ones.

use a fuzzy temporal language. The two options are unified in
a single language whose grammar is presented below.

req ::= treq | freq
freq ::= Gfreq | F<tfreq | G•tfreq | G−xfreq | freq
U freq | treq | fprop
fprop ::= fprop � fprop | ∼fprop | expr comp expr
expr ::= const | var | expr op expr
comp ::= � | ≺ | � | � | ≈ | �≈
op ::= + | − | ∗ | /

Notice that operator G•t ∈ {G<t, G≤t, G>t, G≥t}. The non-
terminal symbol req is the axiom of the grammar and we use
it to decide wether the goal is specified through a crisp (treq)
or a fuzzy formula (freq).

Since crisp formulae are LTL expressions, there is no need
to further discuss them. Term freq is expressed as a fuzzy
temporal formula (see operators G, F<t, G•t, G−x, U ), a crisp
temporal formula (treq) or a fuzzy untimed formula (fprop).
Note that the term const represents a constant value and var
indicates a variable. As commonly done for LTL, we adopt
the set of natural numbers as temporal domain. Furthermore,
since we suppose that crisp and fuzzy untimed formulae are
defined over finite domains, the universal (∀) and existential
(∃) quantifiers can be added without augmenting the expressive
power of the language.

The semantics of the fuzzy language is inspired by the
theory of fuzzy sets, originally proposed by Zadeh [9]. It
adopts a membership function (µ) that assigns a degree of
truth to each proposition. Possible values are: absolutely true
(1), absolutely false (0), or an intermediate degree of truth (a
value in (0, 1)).

The semantics of fuzzy relational operators (�, ≺, �, �,
≈, �≈) is shown in Figure 2(a) and is compared with that
of the corresponding crisp operators, reported in Figure 2(b).
In contrast to the crisp case, fuzzy relational operators are
not described as an impulse or a step function, but we use a
smooth function to assign a degree of satisfaction between 0
and 1 to those propositions that do not respect the condition,
but are close to it.

o o o o
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const

::= �
| −

const | var
| ≺

− | ∗

expr op expr
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(a)

= | > <
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(b)

Figure 2. (a) Fuzzy membership functions for relational operators and (b)
Crisp membership functions for relational operators.

This also uncerlines that crisp membership functions are
a special case of fuzzy memebrship functions and, for this

reason, fuzzy goals can be considered a generalization of crisp
ones.

For example, we can modify the definition of goal G1.3
(see Table I), to take into account the violation’s severity
given by the amount of dirty clothes (the higher the number
of dirty clothes is, the worse the violation is). Goal G1.3 is
then redefined as follows:

G(dirty clothes � 5)

and the membership function of the relational operator �
is similar to the fourth function shown in Figure 2(a), where
the domain is the amount of dirty clothes and the origin (O)
is represented by the point (5, 0).

Different semantics [9] are available for fuzzy boolean
connectives (e.g., �)) and the connectives derived from this
basic set (e.g., or �, and implies ⇒̃). For operator ∼ we adopt
the definition shown in equation 1. For operator � it is possible
to choose among two possible definitions 2 3. The choice
between one of them depend on the kind of application we are
dealing with, since the former definition is less conservative
than the other one.

µ(∼ π) = 1 − µ(∼ π) (1)
µ(π1 � π2) ≡ min(µ(π1), µ(π2)) (2)

µ(π1 � π2) ≡ µ(π1) ∗ µ(π2) (3)

Once a semantics for operators ∼ and � has been chosen,
operators � is obtained by applying classical De Morgan rule,
and implication (⇒̃) is computed as a residuum of a T-norm.

An intuitive semantics for temporal operators is given in Ta-
ble II, where crisp and fuzzy temporal operators (respectively
Crisp op and Fuzzy op) are expressed in natural language (NL
expr).

Crisp op NL expr Fuzzy op NL expr

G Always G Almost always
G<t Lasts t instants G<t Lasts hopefully

from now t instants from now
G>t Always from exactly G>t Almost always from

t instants exactly t instants
- - G−x Always except at

most some x cases
F Eventually - -

F<t Within t F<t Within around t
F>t Eventually from - -

exactly t instants
U Until U Almost Until

Table II
TEMPORAL OPERATORS.

Besides considering the fuzzy connectives and propositions,
we are also interested in adding an intrinsic vagueness to
temporal operators. Due to lack of space, in this paper we only
discuss the semantics of some temporal operators2 that are re-
quired in the laundry system example. The semantics is defined

2The complete semantics of the language is available at http://home.dei.
polimi.it/pasquale/publications/FuzzyLanguage.pdf
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Once a semantics for operators ∼ and � has been chosen,
operators � is obtained by applying classical De Morgan rule,
and implication (⇒̃) is computed as a residuum of a T-norm.

An intuitive semantics for temporal operators is given in Ta-
ble II, where crisp and fuzzy temporal operators (respectively
Crisp op and Fuzzy op) are expressed in natural language (NL
expr).

Crisp op NL expr Fuzzy op NL expr

G Always G Almost always
G<t Lasts t instants G<t Lasts hopefully

from now t instants from now
G>t Always from exactly G>t Almost always from

t instants exactly t instants
- - G−x Always except at

most some x cases
F Eventually - -

F<t Within t F<t Within around t
F>t Eventually from - -

exactly t instants
U Until U Almost Until

Table II
TEMPORAL OPERATORS.

Besides considering the fuzzy connectives and propositions,
we are also interested in adding an intrinsic vagueness to
temporal operators. Due to lack of space, in this paper we only
discuss the semantics of some temporal operators2 that are re-
quired in the laundry system example. The semantics is defined

2The complete semantics of the language is available at http://home.dei.
polimi.it/pasquale/publications/FuzzyLanguage.pdf
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Figure 1. The KAOS goal model for the laundry system

A. from KAOS to FUGA

Expressing goals through LTL is equivalent to considering
goals as crisp expressions. This way, it is only possible to
assess whether goals are fulfilled or not. There is no way
to say “how much” a goal is satisfied/violated. This may be
sufficient for some goals, but it may not be enough for others.
For example, LTL is good for goal G1.1.3 since we are only
interested in knowing wether a program is selected or not in z
time units. In contrast, the adoption of LTL to formalize goal
G1.4.1 would not be the best option since we may want to
tolerate the cases in which the washing machine terminates a
program a bit later than expected (@(wm.sens = “green��,
at time z� : z� − z = �). This corresponds to considering these
cases as “weak” violations.

The representation of G1.2 and G1.3 as crisp expressions
again would not be ideal. In fact we aim to track the level of
satisfaction of goals G1.2 and G1.3, which depends respec-
tively on the total unit of energy consumed (energy) and the
amount of dirty clothes left to be washed (dirty clothes). The
problem here is that we are not only interested in knowing
whether the goals are satisfied, but we would also like to
be aware of the actual deviations and be ready to adjust the
behavior of the system. Since G1.2 and G1.3 are in conflict,
it could be necessary to relax the less critical one and keep
the other. This is another example that motivates the need for
knowing the satisfaction level of requirements, and then be
able to relax a goal to satisfy another one. This is why FUGA
introduces fuzzy goals to represent those requirements that can
be satisfied up to a certain level (x ∈ [0, 1]). These goals are
rendered as described in Section III. Obviously “crisp” goals,
formalized through LTL expressions, can still be adopted to
represent those requirements that can be simply satisfied or
not.

As already said, we must also define how the system may
adapt at runtime during requirements elicitation. For example
if goal G1.4.1 is violated because the washing machine turns
off suddenly during a washing cycle, we must turn the washing
machine on again. We must also restore the system in a state
where the drum is already filled, the powder must to be added
and the program must be set again. This is a goal that states
how the system should adapt itself, and thus we call it adaptive

goal. The general objective is to turn on the washing machine,
and the associated strategy defines a set of basic actions that
must be performed on the goal model to achieve this objective.

Adaptive goals represent adaptation strategies that must be
performed when a goal is not fulfilled satisfactorily. For exam-
ple, AG1.2 defines the adaptation strategies performed when
goal G1.2 is not fully satisfied. Each strategy has an objective
(e.g., enforce a goal satisfaction, prevent a goal violation,
and so on) and is decomposed into a set of operations that
guarantee the achievement of the objective.

Fuzzy goals allow one foresee different strategies depending
on the satisfaction level of the different goals and on the
current execution context. For example if goal G1.3 is violated
since the amount of dirty clothes is higher than 5, one may
apply two adaptation strategies: relax the conflicting goal G1.2
(for small violations, some 6 or 7 clothes), or allocate a free
washing machine that can work in parallel with the current
one (for more important violations, that is, more than 8 clothes
left).

In this context, it is also important to establish and maintain
the relationships among the elements of the goal model and
those of the running system. This allows one to keep the
adapted system consistent with the corresponding require-
ments and viceversa.

III. CRISP AND FUZZY GOALS

This section presents the language we propose to specify
goals. Crisp goals are still defined in LTL, while fuzzy goals
use a fuzzy temporal language. The two options are unified in
a single language whose grammar is presented in Figure ??,
where G•t ∈ {G<t,G≤t,G>t,G≥t}.

req ::= treq | freq
freq ::= Gfreq | F<tfreq | G•tfreq | G−xfreq | freq
U freq | treq | fprop
fprop ::= fprop � fprop | ∼fprop | expr comp expr
expr ::= const | var | expr op expr
comp ::= � | ≺ | � | � | ≈ | �≈
op ::= + | − | ∗ | /

The non-terminal symbol req is the axiom of the grammar
and we use it to decide wether the goal is specified through a
crisp (treq) or a fuzzy formula (freq).
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Figure 2. (a) Fuzzy membership functions for relational operators and (b)
Crisp membership functions for relational operators.

This language allows us to modify the definition of goal
G1.3 and consider the amount of dirty clothes explicitly
as severity of the violation. Needless to say, the highest

the number is, the worse the violation is. The goal can be
redefined as follows:

G dirty clothes � 5

and the membership function of the relational operator � is
similar to the fourth function shown in Figure 2(a), where
the domain is the amount of dirty clothes and the points
in which the membership function is completely satisfied
are those in (−∞, 5], while it gradually decreases its truth
degree for those points in (5,∞).

Different semantics [9] are available for fuzzy boolean
connectives (and f)) and the connectives derived from them
(or g, and implies ⇒̃). For operator not ∼ we adopt the
definition shown in equation 1. For operator f we can decide
between the definitions provided in equations 2 and 3. The
actual choice depends on the application we are dealing with,
since the former definition assigns a more optimistic degree
of satisfaction to the values of the domain than the other.

µ(∼ π) = 1− µ(∼ π) (1)
µ(π1 f π2) ≡ min(µ(π1), µ(π2)) (2)

µ(π1 f π2) ≡ µ(π1) ∗ µ(π2) (3)

Once a semantics for operators ∼ and f is chosen,
operator g is obtained by applying the classical De Morgan
law, and implication (⇒̃) is computed as a residuum of a T-
norm. An intuitive semantics for temporal operators is given
in Table II, where crisp and fuzzy temporal operators are
described in natural language (NL expr).

Besides considering the fuzzy connectives and proposi-
tions, we are also interested in adding an intrinsic vagueness
to temporal operators. Due to lack of space, in this paper
we only discuss the semantics of the temporal operators
that are required in the laundry system example4. The
semantics is defined in an operational way through function
fEval(freq, i) that evaluates every possible fuzzy formula
at instant i by adopting other auxiliary functions.

According to the traditional semantics of fuzzy temporal
operators [10], evaluating F<tfreq at instant i would be
equivalent to finding the most satisfactory truth value of
freq in the interval [i, i + t). This interpretation is not
satisfactory for us since we also want to take into account
the situations in which freq has a high value of truth for
a time instant x slightly greater than i + t. For example,
for goal G1.4.1, where we want to tolerate the fact that
a washing machine takes a bit more time to complete
a washing program. This corresponds to evaluating the
satisfaction of goal G1.4.1 by taking into account also some
time instants greater than (i+ wm.program.duration) for
which proposition (wm.sens = ′green′) is true.

4The complete semantics of the language is available at http://home.dei.
polimi.it/pasquale/publications/FuzzyLanguage.pdf
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To this aim, we need to fuzzify the temporal interval
[i, i+ t) by introducing a membership function µF<t that is
evaluated on the offset between the current instant (x) and
i. In particular, µF<t

(x) is equal to 1 when x ∈ [0, t) and
decreases to zero when x ≥ t, as shown in Figure 3.

If the membership function µF<t
is positive in the interval

[i, w), the operational semantics for F<t(freq) at instant i
is given by evaluating freq for each instant x (x ∈ [i, w))
and by weighting it with respect to the value returned by
the membership function µF<t

at instant x. F<t becomes
the maximum among these evaluations. The semantics of
operator F<t is also expressed by the following recursive
function:

fEval(F<t(freq), i) = val1(freq, t, i, 0)
float val1(freq, t, i, timer){
if(µF<t(timer) > 0)

return max(µF<t(timer) ∗ fEval(freq, i),
val1(freq, t, i+ 1, timer + 1))

else return 0; }

According to this semantics, goal G1.4.1 is redefined as
follows:

@(wm.state = ready)⇒
Ft<p.duration(wm.sens = “green”∧
@(wm.state = washCompleted))

Informally, it states that if the washing machine becomes
ready, the washing program must complete (wm.sens =
′green′) within some z time instant, from that moment (z =
wm.program.duration).

According to the literature [10] the fuzzy temporal oper-
ator G is evaluated in t as follows:

eval(Gfreq, i) = eval(freq, i) f eval(Gfreq, i+ 1)

where function eval(freq, t) assigns a truth value to freq
in i. In this definition, G is computed by aggregating, through
operator f, the truth values of freq for each instant i. This
implies that if the truth value of freq becomes completely
false (equals 0) for a certain time instant, due to a transient
violation, G becomes 0 consequently, exactly like in the crisp
case. Hence this interpretation for operator G does not allow
us to tolerate transient violations. For example when the
number of dirty clothes for certain time instants exceeds
five, goal G1.3 would be violated.

Crisp op NL expr Fuzzy op NL expr

G Always G Almost always
G<t Lasts t instants G<t Lasts hopefully

from now t instants from now
G>t Always from exactly G>t Almost always from

t instants exactly t instants
- - G−x Always except at

most some x cases
F Eventually - -

F<t Within t F<t Within around t
F>t Eventually from - -

exactly t instants
U Until U Almost Until

Table II
TEMPORAL OPERATORS.

For this reason, we adopt a different semantics: when the
truth value of freq is under a certain threshold (thmin), it
is not taken into account in the evaluation of G. Instead,
it is substituted by a satisfaction value, computed by a
membership function (µG), that depends on the number of
past violations (i.e., the truth value of freq is less than
thmin). The membership function µG returns a truth value
that is inversely proportional to the number of violations
already occurred (# errors), as shown in Figure 4.

The semantics of operator Gfreq is described by the
following function:

fEval(Gfreq, i) = val2(freq, i, 0)
float val2(freq, i, error){
if(fEval(freq, i) < thmin){

error ++;
if(µG(error) == 0) return 0;

else return
µG(error)
µG(error−1)

∗ val2(freq, i+ 1, error); }
else return fEval(freq, i) ∗ val2(freq, i+ 1, error)}

0

1

# errors

Figure 4. Membership function µG .

Function fEval, which is used to describe the semantics
of Gfreq, adopts an auxiliary function val2 that takes the
sub-formula (freq) on which G is applied, the instant i
at which the formula is computed, and a violation counter
(error) initialized to 0. Every time a violation occurs, error
is incremented. If the updated value of error makes µG
return a value equal to zero, it means that Gfreq has a truth
value equal to 0 (return 0). Otherwise the current truth
value of Gfreq is multiplied by factor µG(error)

µG(error−1) . Note
that if no violation occurred, the truth value of freq (given
by fEval(freq, i)) directly affects the final evaluation of
Gfreq.



This way, we can redefine goal G1.3 as follows

G dirty clothes � 5

to say that the number of dirty clothes must almost always
be less than or equal to five.

Operator G−xfreq requires that freq has a satisfactory
truth value with the exception of “at most some” x cases.
This is useful when we want to admit a certain number of
violations. For example, goal G1.2, due to peaks in energy
consumption, could accept up to a maximum of some ten
violations. This way, goal G1.2 can be redefined as follows:

G−10 energy ≤ EMAX

to mean that the amount of consumed energy must always
be less than or equal to EMAX , but we accept up to ten
exceptions.

Operator G−x is semantically similar to G, with the only
difference that G−x adopts a slightly modified membership
function (µG−x

). This function returns 1, when it is evaluated
for a number of violations in the interval [0, x], and returns
a value between 0 and 1 if the number of violations (k) is
greater than x.

Operator G>t has a semantics similar to that of G, since
evaluating G>t in i is equivalent to evaluating G in i+ t:

fEval(G>tfreq, i) = fEval(Gfreq, i+ t)

Note that fEval(fprop, i) evaluates a fuzzy proposition
(fprop) by adopting the membership functions of the rela-
tional operators shown in Figure 2(a), while fEval(treq, i)
checks expression treq according to the usual LTL seman-
tics.

A. Tuning the membership functions

Every time the formalization of a goal introduces a
new membership function, we must define its shape by
considering the preferences of the different stakeholders.

Our approach considers that membership functions be
limited and continuous, and in most of the cases they have
a trapezoidal shape (but can also degenerate into triangles).
For each of these trapezoidal functions, we must define the
domain ([d,D]) over which it can assume values between 0
and 1. We must also specify two key points in the domain:
the minimum (m) and maximum (M ) values for which the
corresponding crisp formula would be true (i.e., the upper
parallel side of the trapezoid). These points obey to the
following inequality: d ≤ m ≤ M ≤ D, with the general
case when d < m ≤ M < D. The user can tune the
severity of these membership functions by expressing the
gradient of the segments that go from point (x, 0), with
x ∈ [d,m), to point (m, 1), and from point (M, 1) to (y, 0),

d D
m M
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high

Tolerance level

(a)

d D
m M m' M'M+(m'-M)*(M-m)

(M-m)+(M'-m')

D'=d'

[d, D'] [d', D]
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Figure 5. (a) Customization of a trapezoidal membership function and (b)
Splitting of the membership function into smaller trapezoidal functions.

with y ∈ (M,D]5. This is equivalent to choosing a value for
x and y. Non expert users can just specify a severity level
among {low, medium, high} when they specify goals. This
corresponds to fixing x = m−d

3 +d and y = (D−M)∗ 23+M
for low, x = m−d

2 +d and y = D−M
2 +M for medium, and

x = (m − d) ∗ 2
3 + d and y = D−M

3 +M for high. These
possibilities are shown in Figure 5(a).

The membership function that does not present a trape-
zoidal shape corresponds to a formula for which the crisp
version is true in more than one interval of the domain.
However these cases can be reduced to the trapezoidal case
by decomposing the problem into smaller trapezoidal prob-
lems obtained by segmenting the domain in subsets, each
containing exactly one interval in which the membership
function is one. This case is shown in Figure 5(b).

IV. ADAPTIVE GOALS

FLAGS proposes adaptive goals as means to conveniently
describe adaptation countermeasures in a parametric way,
that is with respect to the satisfaction level of the other
goals or the environmental conditions. Each countermeasure
comes with a set of constraints (trigger and conditions) that
identify the execution points where it must be performed, an
objective to be achieved, and a sequence of actions applied
on the goal model to fulfill the aforementioned objective.

A condition specifies properties of the system (e.g., sat-
isfaction levels of both conventional and adaptive goals,
goals’ priorities, countermeasures already performed) or of

5The user can express the gradient of only one of these segments when
d = m or M = D.



the environment (e.g. domain assumptions) that must be
true to allow a specific countermeasure to be activated. A
trigger expresses a constraint on the satisfaction of a leaf
goal and activates the execution of a countermeasure if the
corresponding conditions are satisfied too. As for objective,
we can:
• Enforce the satisfaction of a leaf goal6 without modi-

fying its definition, and its membership functions;
• Enforce a weaker version of a goal by relaxing its mem-

bership function or changing its definition completely;
• Prevent situations in which the satisfaction level of

goals would be too low.
Note that a countermeasure that enforces the original goal
gives more guarantees than a countermeasure that enforces
a weaker version of the goal, which gives more guarantees
than a countermeasure that just prevents a goal from being
violated. The objective of a countermeasure allows us to
assess the success of an adaptation at runtime and evaluate
whether other countermeasures must be performed. Actions
can change the goal model by:
• Adding/Removing goals;
• Modifying the definition of a leaf goal (i.e., changing

the membership function adopted for its evaluation);
• Adding/Removing operations;
• Modifying the pre- and postconditions of operations;
• Adding/Removing entities, events, or agents.
These actions can be tuned according to the satisfaction

level of goals or the execution context, by applying more or
less severe adaptations accordingly. If we deal with critical
goals, or if a goal largely deviates from the desired objective,
a countermeasure that enforces a goal satisfaction without
modifying its membership function can be performed. While
for those situations in which a goal cannot be completely
satisfied (i.e., its satisfaction is always under a certain
threshold), we must substitute the existing goal with a new
one or relax its membership function.

Countermeasures may conflict the same ways as conven-
tional goals do. We can have possible conflicts:
• Among countermeasures that can be applied on the

same goal at the same time due to overlapping con-
ditions;

• Among countermeasures associated with conflicting
goals (the conflict is made explicit in the goal model).

For the first type of conflicts, our policy is to trigger
the stronger countermeasure, while the others can only be
performed if the previous one fails. If there is more than
one equivalent countermeasure, all of them can be triggered
at the same time in case they do not produce an incoherent
goal model. As explained in Section II, conflicting goals
in general are associated with different priorities (the most

6This assumption does not reduce the expressive power of our approach
since adaptations applied on higher level goals can always be reduced to
violations of leaf ones [5].

critical ones have the highest priorities). This allows us to
solve the second type of conflicts since the countermeasures
of the adaptive goals with higher priorities are triggered.
Despite these potentials, the mechanism adopted to handle
conflicts is still too simplistic in certain situations. For
example a vicious cycle may exist when a countermeasure
A has a negative side effect on another goal, and that goal’s
countermeasure B has a negative side effect on the first goal
as well. These cases can be handled by tuning the condi-
tions of the countermeasures involved, which would become
pretty complex. For example, to solve the aforementioned
situation, we should state that countermeasure A cannot be
executed if it has been already performed in the past, and B
was performed as an effect of A.

The laundry system uses the adaptive goals shown in
Figure 6. Adaptive goal AG1.2 is associated with goal G1.2,
since it is triggered when the total amount of consumed
energy is too high. AG1.2 is decomposed into a single coun-
termeasure (C1). C1 is activated if the violation level of goal
G1.2 is lower than 0.8 as stated in its associated condition
(Sat(G1.2) < 0.8). Obviously when the satisfaction level is
higher than 0.8, no countermeasures are taken. This coun-
termeasure can enforce the satisfaction of the original goal
by substituting operation Select Program with operation
Select Ecoprogram, which would choose cheap washing
programs. These programs must have a duration inversely
proportional to the actual amount of consumed energy, that
is, 2− ∼ (Sat(G1.2)) hours. This example highlights how
adaptation can be tuned depending on the satisfaction level
of stated requirements. In our case, the duration of a selected
washing program will be inversely proportional to the sat-
isfaction level of goal G1.2: the more energy is consumed,
the shorter the selected washing program is. If a suitable
eco-program does not exist, a washing cycle cannot be per-
formed. Countermeasure C1 applies the following actions on
the goal model: removeOperation(Select Program), and
addOperation(Select Ecoprogram). This last operation is
equal to operation Select Program but the required post-
condition becomes:

ReqPostG1.1.3: wm.program.name = p.namef
wm.program.duration = p.durationf
wm.program.duration ≤ 2− ∼ Sat(G1.2)

We associate adaptive goal AG1.3 with goal G1.3. AG1.3
is operationalized through 2 countermeasures (C2 and C3).
C2 is activated when the satisfaction of goal G1.3 is lower
than 0.8 (its condition is Sat(G1.3) < 0.8). It relaxes the
membership function of goal G1.2, making it less strict, as
defined in Figure 7. This way, we reduce the number of times
countermeasure C1 is triggered, avoiding to be blocked
waiting for a suitable washing program to be selected again.

Countermeasure C3 is activated when the satisfaction
level of goal G1.3 is lower than 0.6, and if C2 was already
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Figure 7. A relaxed version of the membership function of goal G1.2.

triggered without achieving its objective, as stated in its
condition (Sat(G1.3) < 0.6f ∼ C2). This countermeasure
adds a new goal G1.5 to use another washing machine if
there are other clothes to wash. Goal G1.5 is defined as
follows:

G((d.amount > 0f ∼ (wm.state = free)f
∃wm′ ∼ (wm.id = wm′.id) f wm′.state = free)⇒
F(wm′.state = selected))

Since goals G1.2 and G1.3 are in conflict, adaptive goals
AG1.2 and AG1.3 may have conflicts of type 2. In this case,
only the countermeasures associated with the most critical
goal are triggered (i.e., C2 and C3). Furthermore C2 and C3
can also be in conflict, but countermeasure C2 is triggered
first since it is explicitly specified in the condition of C3.

Adaptive goal AG1.4.1 is associated with goal G1.4.1
and is operationalized through countermeasure C4. C4 is
activated when the washing machine turns off suddenly
during a washing cycle. This is defined in AC5’s condition:
(wm.state = off ). The objective of this countermeasure is
to restore the satisfaction of goal G1.4.1 by turning on the
washing machine and restoring it in a state in which the
drum is filled, but the powder must be added newly and the
program must be selected. To this aim this countermeasure
adds goal G1.6, which is defined as follows:

F(wm.state = selectedf ∼ (wm.powder)f
∼ (wm.drumEmpty) f wm.program = “”)

This goal can be operationalized through operation Turn
On WM:

Operation: Turn On WM
Input: wm :WashingMachine

Output: wm :WashingMachine
DomPre: wm.state = off

DomPost: wm.state = selected
TrigPre: turn on
ReqPre: @(wm.state = off)

ReqPost: turn on ∧ ¬(wm.powder)∧
¬(wm.drumEmpty) ∧ (wm.program = “”)

The application of a countermeasure may also modify
existing adaptive goals by eliminating some countermeasures
that are no longer useful. In general, if a countermea-
sure removes a goal, an operation, or an object (agen-
t/entity/event), all the countermeasures that modify these
elements are invalidated. For example, if countermeasure
C1 is applied, all countermeasures that modify or remove
operation SelectProgram are invalidated. Furthermore, if
a countermeasure modifies/relaxes a goal’s definition, some
countermeasures are triggered less frequently, since the
possibility of a goal to be satisfied under a certain threshold
is reduced. For example, since countermeasure C2 relaxes
the membership function of goal G1.2, countermeasure
C1 will be triggered less frequently. Note that adding or
removing countermeasures also requires that the conflicts
among existing countermeasures be updated.

V. GOALS AT RUNTIME

Besides being used to “generate” the actual application,
the goal model is also used to oversee its runtime adaptation.
A live goal model allows us to efficiently handle changes
due to new requirements or modifications to the context.
It also allows us to reason on countermeasures and under-
stand whether and how they are feasible on the different
application instances. Devised countermeasures behave dif-
ferently in the different situations, and thus they may not
achieve expected results. Similarly, designed membership
functions may not correspond to the actual needs of the



stakeholders. For example, countermeasure C3, which tries
to use a free washing machine, may become useless if
all washing machines are always busy, or conversely, the
membership function to represent the constraint of goal G1.2
does not trigger an adaptation when needed, e.g., because its
membership function is too optimistic. All these situations
must be properly supervised at runtime. We foresee that each
instance of the application is associated with a live goal
model that receives field data and decides how to change
the application, if needed. Field data are used to access the
satisfaction of conventional goals, evaluate the triggers and
conditions associated with adaptive goals, and select the
actual countermeasures that must be executed to keep the
application on track. Adaptation actions are properly trans-
lated into statements at application level, whose execution
is triggered by the goal model. Changes can either refer to
the single instance, and thus they only affect the particular
instance and its goal model, or to the entire application, that
is, they modify the definition of the goal model permanently,
and future instances will start from the new version.

VI. RELATED WORK

The concept of fuzzy requirements [11] is not new. Fuzzi-
ness is mainly adopted to express uncertain requirements [4],
[12] and to perform trade-off analysis among conflicting
functional requirements [13]. Liu et al. [12] introduce a
methodology to elicit non-functional requirements through
fuzzy membership functions that allows one to represent
the uncertainty of human perception. Instead, Whittle et
al. [4] propose RELAX, a notation to express uncertain
requirements, whose assessment is affected by the impreci-
sion of measurement, and integrate it with a goal modeling
methodology [14]. The adoption of fuzziness for trade-
off analysis [13] aims to identify aggregation functions
to combine correlated requirements into higher-level ones.
Fuzziness can also guide the selection of COTS compo-
nents during requirements elicitation. For example, Alves et
al. [15] use the degree of satisfaction of one or more goals
to select components and analyze possible mismatches.

In this paper, we exploit fuzziness to express and assess
the satisfaction degree of requirements with the idea of
preventing some violations and tolerating small/transient
deviations. We think that reasoning with satisfaction levels
allows us to effectively select and tune adaptation. Letier et
al. [16] have also investigated partial satisfaction of goals.
They annotate goal refinement models with some objective
functions, that are measured and evaluated with respect to a
target value. The satisfaction degree of a goal is expressed
in a probabilistic way based on the frequency with which its
objective function is satisfied. Conversely, in our work we
measure the satisfaction level in terms of the proximity of a
goal to being completely satisfied, and not in terms of the
probability it is satisfied.

Our approach also proposes the definition of adaptation
capabilities while eliciting requirements, as it has been
proposed in other works [17], [18]. Lapouchnian et al. [17]
exploit alternative paths in the goal model to derive a set of
possible system’s behaviors. This way, when a requirement
is violated, these alternatives are ready to be selected to
perform adaptation. Goldsby et al. [18] use goal models to
represent the non-adaptive behavior of the system (business
logic), the adaptation strategies (to handle environmental
changes) and the mechanisms needed by the underlying
infrastructure to perform adaptation. These proposals only
handle adaptation by enumerating all alternative paths at de-
sign time. In contrast, we support the continuous evolution of
the goal model by tracing adaptive goals onto the underlying
implementation.

Adapting the specification of the system-to-be according
to changes in the context was originally proposed by Salifu
et al. [19]. It was also extensively exploited in different
works [20], [21] that handled context variability through
the explicit modeling of alternatives. Penserini et al. [20]
model the availability of execution plans to achieve a goal
(called ability), and the set of pre-conditions and context-
conditions that can trigger those plans (called opportunity).
Ali et al. [21] detect the parameters that come from the
environment (context) and associate them with specific vari-
ation points in the goal model. This way different execution
plans are selected at runtime based on the actual context.
Conversely, in our approach adaptation does not only refer
to variation points but it allows us to apply modifications
in the goal model. Furthermore the factors that can trigger
such modifications depend on: (1) the context, (2) the actual
satisfaction level of goals, and (3) the countermeasures
already performed on the goal model.

All these works address adaptation at requirements level,
but they mainly target context-aware applications and
context-based adaptation. They do not consider adaptations
required by the inability to satisfy some goals. A differ-
ent approach is instead adopted by Wang et al. [3] who
provide reconciliation mechanisms when requirements are
violated. They generate system reconfigurations, guided by
OR-refinements of goals, after the violation of a goal is diag-
nosed. They choose the configuration that contributes most
positively to the non-functional requirements of the system
and also has the lowest impact on its current configuration.
Again, our work is different since it foresees a wider set of
adaptations that can change the goal model in different ways
and these changes can be traced onto the underlying system.
Furthermore we allow one to tune adaptation by considering
the satisfaction level of fuzzy goals.

VII. CONCLUSIONS

The paper presents FLAGS, an innovative goal model,
based on KAOS, for specifying the requirements and adapta-
tion capabilities of self-adaptive systems. Its key innovations



are the transformation of goals into live entities, the distinc-
tion between crisp and fuzzy goals, with which one can
associate different satisfaction levels, and the definition of
adaptation strategies as if they were goals. All these elements
help embed self-adaptability in software systems from the
very beginning (requirements elicitation), and reason on
possible consequences.

This is the first complete formalization of the goal model,
and our future work will concentrate on further shaping
and refining it. We will better investigate the conflict res-
olution mechanism among countermeasures and the training
of membership functions through significant examples. In
parallel, we will also investigate simpler notations to provide
practitioners with a sound and usable modeling means.
Finally, we plan to adopt our goal model to specify some
real(istic) self-adaptive systems to gain more experience,
identify further requirements for it, and empirically assess
its usefulness.
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