
From Goals to Reliable Service Compositions∗

Liliana Pasquale
Politecnico di Milano - Dipartimento di Elettronica e Informazione

Piazza Leonardo da Vinci, 32 - 20133 Milano, Italy
pasquale@elet.polimi.it

Abstract

A key feature of modern enterprises lies in the availabil-
ity of software systems able to adapt themselves to the fre-
quent changes in the business processes. Services have al-
ready proven their ability to provide flexible solutions, but
so far the focus has been mainly on the technological in-
frastructure. Oftentimes user requirements have been ne-
glected and also the reliability of proposed solutions has
been traded for flexibility and dynamism. These are the mo-
tivations for the research proposal presented in this paper.
Starting from the actual user requirements, we aim to pro-
vide a complete solution to (semi) automatically derive co-
herent, complete, and reliable service compositions. The
proposal uses a goal model to represent the business goals
and supervision directives to oversee and enforce the relia-
bility of obtained compositions. Execution and supervision
are supported through a flexible run-time infrastructure.

1 Research Problem

It is already proven that service-based IT solutions pro-
vide different advantages [2]: quick reaction and adapta-
tion to new needs, easy integration of heterogenous com-
ponents, and reduced development costs. So far, these so-
lutions have been mainly addressed from a technological
perspective, but, in contrast, they should come from the ac-
tual requirements of the different stakeholders. Besides the
technological achievements, we need methods and tools to
precisely relate requirements to services and service com-
positions (also known as processes).

The business dimension imposes frequently changing re-
quirements, while the distributed nature makes them intrin-
sically unreliable: network failures may happen, partner
services can be down or unavailable, or they can change in-

∗This research has been partially funded by the European Commis-
sion, Programmes: IDEAS-ERC, Project 227977 SMScom, and FP7/2007-
2013, Projects 215483 S-Cube (Network of Excellence) and 216556
SLA@SOI.

dependently of the applications that use them. This means
that requirements must state the functionality of the system-
to-be, its qualities of service, by means of proper KPIs1

(Key Performance Indicators), and also how to cope with
changes in both the requirements and the execution envi-
ronment (self-adaptation capabilities). Functional require-
ments mainly dictate the service composition, while non-
functional ones help define the KPIs of interest and how to
keep the system on track in case of anomalies.

The general goal of releasing reliable service composi-
tions, which meet user requirements and remain aligned
with them, poses challenges at different levels of abstrac-
tion. At requirements level, we must provide suitable mod-
els to represent requirements, along with their potential
changes. These requirements must also be related to the cor-
responding implementations to assess their satisfaction and
be able to propagate their changes onto the system. At ap-
plication level, KPIs must be constantly measured and self-
adaptation capabilities be activated when needed to keep the
execution on track and give the user the perception of a re-
liable and trustable solution.

Available models and technologies are not able to com-
pletely address the issues discussed above. Goal models
[8, 21] and scenario-based solutions do not provide explicit
support to uncertainty or adaptation. Moreover, common
business process notations, like BPMN (Business Process
Modeling Notation [13]), are not expressive enough to em-
bed requirements into the business process, trace them, and
account for user-oriented reliability.

The proposal presented in this paper starts from pow-
erful models to enforce requirements in service composi-
tions from application design down to execution. It assumes
the adoption of a live goal model able to change at runtime
and track the satisfaction level of its requirements. Require-
ments traceability is guaranteed by linking the goal model
to both a functional and a supervision model of the service
composition. The former represents the set of compositions
able to satisfy stated requirements. The latter defines how to

1KPIs provide business-oriented indicators of the actual performance
of the system.

1



assess the KPIs of interest and keep the application on track
(i.e., how to add reliability to service compositions). A flex-
ible runtime infrastructure supports the controlled execution
of service compositions through the adoption of suitable en-
gines, along with data collectors, monitors and adaptors to
enact the directives defined by the supervision model.

2. Background and Related Work

The background of our proposal comprises solutions
for modeling the requirements of service-based, and adap-
tive, systems, tracing them, and overseeing the reliability of
compositions.

As for the first aspect, some preliminary works [5] have
already used goal models for specifying the requirements of
adaptive systems. Their adaptation strategies are expressed
as enumerations of predefined alternative tasks. Our solu-
tion, in contrast, aims to provide means to specify adap-
tation solutions that can evolve with respect to the actual
execution of the system and its past history.

The bridge between requirements and service composi-
tions has already been studied by Lo and Yu [9], who relate
business patterns to “recurring” service-oriented solutions,
and by Pistore et al. [7]. They are interested in the off-line
formal verification of goal satisfaction and relate process
activities to their corresponding goals through annotations.
These are interesting works, but we would like to obtain
more from requirements. We would like to be able to infer
the structure of the service composition and, when possi-
ble, derive the process activities and their execution order
directly from goal operationalization. We also want to use
goals to infer a coherent supervision model that oversees
the execution of the service composition and helps keep it
on track.

Also the problem of requirements monitoring has al-
ready been addressed. Mylopolus et al. [19] use the gen-
eration of log data to infer the denial of requirements
and detect problematic components. Robinson [16] dis-
tinguishes between the design time model, where business
goals and their possible obstacles are defined, and the run-
time model, where logical monitors are derived from the
obstacles and are applied onto the running system. Obsta-
cle analysis helps detect possible problems. Other moni-
toring approaches do not start from requirements and cover
different functional aspects and qualities of services. For
example, Ludwig et al. [10] monitor the run-time state of
the agreements established between a service provider and
its customers, while Erradi et al. [4] propose a middleware
to support the fault-tolerant execution of services based on
user-specified policies.

These proposals, and others [17, 15], only concentrate on
overseeing the different aspects related to execution. As for
adaptation, Dynamo [6] provides atomic recovery actions,

which can be combined to create user-defined strategies, to
adapt the behavior of the different process instances, while
VieDAME [11] and SCENE [3] use dynamic binding tech-
niques to change bound services at runtime.

Our proposal builds on these solutions and emphasizes
the separation among probing, analysis, and reaction to
provide a single homogeneous framework in which the
different approaches can be seamlessly integrated. Dif-
ferent solutions cover different aspects; their integration
leads to a complete, but customizable, solution without re-
implementing everything in a single assembly. This way,
monitoring and adaptation capabilities are not hard-coded
in the infrastructure, but can be selected and customized ac-
cording to the actual needs.

3. Proposed Approach

Figure 1 sketches our approach. It adopts a goal model
to represent the requirements (WHY). From the goals we
derive a functional and a supervision model of the service
composition (WHAT). Finally we support its reliable exe-
cution through a suitable run-time infrastructure (HOW).

The proposal exploits the KAOS goal model [18] as
starting point to represent requirements2. This choice lays
in the ability of goals to show the alignment of the system-
to-be with the organization’s objectives through refinement
relationship among goals [18]. We also plan to combine
KAOS with goal modeling approaches for self-adaptive sys-
tems, like RELAX [20], to express uncertainty. RELAX
distinguishes between critical and non critical goals. The
latter may be relaxed with an alternative definition that must
hold in critical situations to ensure the former.

The capability of automatically deriving goals’ opera-
tions, as explained by Letier [8], eases the derivation of the
functional model and permits us to automatically derive the
supervision directives that must be applied at runtime. We
also argue that the relaxed definition of non-critical goals
can guide the generation of recovery actions that modify
the flow of process activities when critical situations are en-
countered.

The functional model adopted to specify the behavior
of service compositions is based on an abstract version of
BPEL (Business Process Execution Language [12]). It al-
lows us to embed in a single specification the different pro-
cess implementations that satisfy defined requirements. The
method applied to infer the functional model is based on the
following macro steps:

• We associate each operation with an abstract service
composition fragment and the set of its partner ser-
vices. Process activities are derived by inspecting the

2Lack of space does not allow us to provide details about KAOS. We
assume that readers are familiar with its main concepts.

2



WHY?

...

WHAT?

WHO, HOW?

Supervision
Engine

Data 
Collection

. ..

Objectives

Functional 
Specification

Supervision 
Directives

Application
Instance

...

. ..

Monitoring

Recovery

Execution
Engine

Supervision
Infrastructure

Figure 1. Overall approach.

definition of the corresponding operations. The events
adopted in the definition of an operation are trans-
formed into activities that imply the interaction of the
process with a partner service. For example, events
that appear in preconditions are associated with BPEL
receive or pick activities, while events involved in post-
conditions generate invoke or reply activities. We plan
to develop general strategies to derive the methods
partner services are supposed to provide and group
them into suitable interfaces.

• We compose process fragments according to the crite-
ria imposed by the pre- and post-conditions of the op-
erations process fragments are associated with. Since
the generation of functional specifications automati-
cally is not always possible, human intervention may
be needed.

Along with the functional specification, we provide a su-
pervision model in the form of data collection, monitoring
and recovery directives. Data collection directives define
the data on which monitoring constraints are verified or in-
formation exploited by recovery strategies. They have a
direct mapping onto the data that can be collected at run-
time: process internal variables, exchanged messages, data
obtained by invoking external probes, and data coming from

previous process executions. Monitoring directives spec-
ify the behaviour and KPIs the process must provide. They
can be represented in terms of FOL (First Order Logic) or
through LTL (Linear Temporal Logic) assertions over a pro-
cess scope. Recovery directives are expressed in a way sim-
ilar to [6]. They are complex strategies composed of atomic
actions: for example, retry (retries to invoke a partner ser-
vice), notify (informs a user about a problem), substitute
(changes a faulty partner service with another one). Some
of them can only be applied synchronously while others are
asynchronous. Recovery actions must indicate their scope:
the process instance that is being monitored, a subset of the
running process instances, or the actual process definition
and thus all its future instances. In this last case, we also
need to manage, and make coexist, the different versions of
the process definition.

Supervision directives can be defined manually. In this
case, we should provide an intuitive language to ease the
definition of the reliability directives and hide their com-
plexity. This activity may be risky, since recovery defined
by users may conflict with set goals or with other recovery
directives already defined. Our proposal is to investigate
patterns to monitor basic QoS properties, compose KPIs,
and manage recurring failures. For example, if the monitor-
ing assertion is about response time, we can exploit a recov-
ery directive that invokes an alternative service if the first
one is not available. We would like to derive supervision di-
rectives (semi) automatically from goals. The formalization
of goals allows us to infer the corresponding monitoring di-
rectives, expressed either through pre- and post-conditions
or through temporal constraints. The scope of these con-
straints is derived from the process activities the goal relies
on. Data collection directives are retrieved by looking at the
elements (process variables, messages, etc.) that correspond
to the events and entities adopted in the goal’s specification.

Finally we will provide a flexible runtime infrastructure
able to support the reliable execution of processes and en-
force supervision directives. Our preliminary ideas are de-
scribed in [1]: the execution infrastructure controls different
BPEL engines integrated over the same set of supervision
components. The architecture is centered around plug-ins
to easily add and remove different data collector, monitor-
ing, and recovery components. Each BPEL Engine is an
instance of ActiveBPEL Community Edition Engine aug-
mented with probes to collect process data. The Data Col-
lector acts as façade for collecting external data and for re-
trieving and storing historical data from/in the repository.
The Monitoring and Recovery components hold the moni-
toring and recovery plug-ins, respectively, we want to use.

The main element of the architecture is the Supervision
Engine, based on rule engine technology [14]. It is in charge
of activating external and historical data collection, as well
as any monitoring and recovery activity. This is achieved by

3



defining rules on the data contained in the working memory:
process state data coming from probes, external and his-
torical variables collected through the Data Manager, and
analysis results. Our framework also provides a configura-
tion tool called Supervision Manager, in charge of config-
uring the various components of the framework according
to the reliability model of interest. In particular, it con-
figures the probes within the processes, to collect internal
data, the Supervision Engine, to retrieve external and his-
torical data, and defines how monitoring and recovery are
activated. It also provides the Monitoring component with
the constraints each plug-in is supposed to check and the
Recovery component with the recovery strategies.

References

[1] L. Baresi, S. Guinea, and L. Pasquale. Integrated and Com-
posable Supervision of BPEL Processes. In Proc. of the 6th
Int. Conf. of Service Oriented Computing, pages 614–619,
2008.

[2] N. Bieberstein, S. Bose, M. Fiammante, K. Jones, and
R. Shah. Service-Oriented Architecture Compass: Business
Value, Planning, and Enterprise Roadmap. Prentice Hall
PTR, 2005.

[3] M. Colombo, E. D. Nitto, and M. Mauri. SCENE: A Ser-
vice Composition Execution Environment Supporting Dy-
namic Changes Disciplined Through Rules. In Proc. of the
4th Int. Conf. on Service Oriented Computing, pages 191–
202, 2006.

[4] A. Erradi, P. Maheshwari, and V. Tosic. Policy-Driven Mid-
dleware for Self-adaptation of Web Services Compositions.
In Proc. of the 7th Int. Middleware Conf., pages 62–80,
2006.

[5] H. J. Goldsby, P. Sawyer, N. Bencomo, B. H. C. Cheng, and
D. Hughes. Goal-Based Modeling of Dynamically Adap-
tive System Requirements. In Proc. of the 15th Int. Conf.
on Engineering of Computer-Based Systems, pages 36–45,
2008.

[6] S. Guinea. Dynamo: a Framework for the Supervision of
Web Service Compositions. PhD thesis, Politecnico di Mi-
lano, 2007.

[7] R. Kazhamiakin, M. Pistore, and M. Roveri. A frame-
work for integrating business processes and business re-
quirements. In Proc. of the 8th Int. Enterprise Distributed
Object Computing Conf., pages 9–20, 2004.

[8] E. Letier. Reasoning about Agents in Goal-Oriented Re-
quirements Engineering. PhD thesis, University of Louvain,
Belgium, 2001.

[9] A. Lo and E. Yu. From business models to service-oriented
design: A reference catalog approach. In Proc. of the 26th
Int. Conf. on Conceptual Modeling, pages 87–101, 2007.

[10] H. Ludwig, A. Dan, and R. Kearney. Cremona: an architec-
ture and library for creation and monitoring of WS-agreents.
In Proc. of the 2nd Int. Conf. on Service Oriented Comput-
ing, pages 65–74, 2004.

[11] O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive Mon-
itoring and Service Adaptation for WS-BPEL. In Proc. of
17th Int. World Wide Web Conf., pages 815–824, 2008.

[12] OASIS. Business Process Execution Language for Web Ser-
vices, Version 1.1. BPEL4WS specification, 2003.

[13] OMG - Object Management Group. BPMN. http://
www.bpmn.org/.

[14] M. Proctor and et al. Drools. http://www.jboss.
org/drools/.

[15] F. Raimondi, J. Skene, and W. Emmerich. Efficient online
monitoring of web-service slas. In Proc. of the 16th ACM
SIGSOFT Int. Symposium on Foundations of software engi-
neering, pages 170–180, 2008.

[16] W. N. Robinson. Monitoring Web Service Requirements.
In Proc. of the 11th Int. Requirements Engineering Conf.,
pages 65–74, 2003.

[17] SeCSE Integrated Project. A4.D8 Policy Specification and
Integration with Existing Standards. Technical report, 2006.

[18] A. van Lamsweerde. Requirements Engineering: From Sys-
tem Goals to UML Models to Software Specifications. Wiley,
2009.

[19] Y. Wang, S. A. Mcilraith, Y. Yu, and J. Mylopoulos. Mon-
itoring and Diagnosing Software Requirements. Automated
Software Engg., 16(1):3–35, 2009.

[20] J. Whittle, P. Sawyer, N. Bencomo, and B. H. C. Cheng. Re-
lax: Incorporating uncertainty into the specification of self-
adaptive systems. Technical report, 2009.

[21] E. S.-K. Yu. Modelling strategic relationships for process
reengineering. PhD thesis, Toronto, Ont., Canada, 1996.

4


