
 42 COMPUTER Published by the IEEE Computer Society 0018-9162/12/$31.00 © 2012 IEEE

COVER FE ATURE

If the need for a feature materializes at runtime, the
software system can use a DSPL to cope with that change
by switching from one variant to another while executing.
The DSPL feature model ensures that the system moves
from one consistent configuration to another and that it
satisfies the feature constraints. However, switching from
one variant to another might not be enough. Functionality
might need to vary to cope with unforeseen situations, and
the feature model itself might need alteration to accommo-
date new variability; thus, the model itself must become a
live runtime entity.

As the “Why Service-Oriented Architecture?” sidebar
describes, SOAs have proven cost-effective in developing
flexible and dynamic software systems,1 and we believe
there are significant mutual advantages in converging
SOAs and DSPLs. The loose coupling in SOAs can pro-
vide DSPLs with the technical underpinnings of flexible
feature management—underpinnings that are grounded
in the considerable work to develop self-adaptive SOA
systems2,3 and in extensive studies of monitoring and
adaptation techniques. DSPLs, in turn, can provide the
modeling framework to understand a self-adaptive SOA-
based system by highlighting the relationships among its
parts. Software system architects can use these models
to understand the implications of modifying a system’s
configuration at runtime.

To encourage this convergence, we are experimenting
with how to enrich Business Process Execution Language
(BPEL) compositions with dynamic variability manage-
ment. Our solution is to use the Common Variability
Language (CVL) to augment BPEL processes with variabil-
ity, which makes it possible to easily generate a DSPL and
use a dynamic version of BPEL to manage and run it. To

A s software systems become increasingly dynamic
and complex, configuration management must
keep pace with a host of changing requirements
and context-awareness demands. The cost

of explicitly identifying and managing all possible fea-
ture configurations in such dynamic systems can easily
become prohibitive, and designers cannot always pin-
point alternatives early on. Consequently, systems must be
able to react to changes and adjust their behavior as they
execute: in short, runtime adaptation is rapidly becoming
essential to software system design.

Developers conceived software product lines to distin-
guish the various features of a system family and organize
those features into meaningful configurations. Designers
adopt a feature model to identify the software product
line’s common and variant features. This model describes
feature constraints, such as if features require or exclude
one another. Because many modern systems elicit actual
requirements only at runtime, they select, deploy, and act
on their features only while they are executing. This idea
is central to the advent of dynamic software product lines
(DSPLs), which extend software product lines to support
late variability.

An operational example of controls in a
smart home demonstrates the potential of
a solution that combines the Common Vari-
ability Language and a dynamic extension
of the Business Process Execution Language
to address the need to manage software
system variability at runtime.

Luciano Baresi and Sam Guinea, Politecnico di Milano, Italy

Liliana Pasquale, Lero—the Irish Software Engineering Research Centre

Service-Oriented
Dynamic Software
Product Lines

 OCTOBER 2012 43

Repository (MySQL)
DyBPEL

Variability
Designer

(CVL)

Runtime modifier
Coordinator

BPEL modifierActive
BPEL

process
name

version
number

process
definition

number of
 instancesT1

T2 idtarget
activitydefinitionblock

activity
type of
change

Process name,
substitutions

Change
configuration

Figure 1. DyBPEL architecture. DyBPEL extends ActiveBPEL so that the service composi-
tion (process) can adapt to changes during its operation. From the Variability Designer,
the coordinator receives a change request with the name of the process to be migrated
and the set of substitutions to apply, which it then dispatches to the runtime and BPEL
modifiers. The repository stores these changes and the data that other elements need
to operate correctly.

validate our approach, we explored how to use it to auto-
mate the domestic systems, such as heating and lighting,
in a smart home.

DYNAMIC BPEL
Our proposed solution is based on Dynamic BPEL

(DyBPEL),2 a tool that complements the widely used Active-
BPEL execution engine (www.activebpel.org) with runtime
adaptation capabilities. DyBPEL exploits aspect-oriented
programming4 to dynamically change the features bound
to variation points as well as
to alter the variation points
themselves. Replacing a fea-
ture does not simply mean
substituting a partner service.
A feature can be a complex
fragment of BPEL code, and
as such, it can aggregate—
and interact with—remote
services and access the pro-
cess’s internal variables. Thus,
BPEL processes can cope
with unexpected changes
in requirements, resource
availability, and execution
environment.

Architectural overview
Figure 1 shows DyBPEL’s

architecture. The Variability
Designer, which is based on
the Eclipse CVL plug-in, pro-
vides a new configuration
along with a change request
to the coordinator, which

oversees the migration of running instances and process
definitions from one configuration (or version) to another.
The runtime modifier is in charge of migrating the run-
ning process instances and embeds ActiveBPEL, which
executes BPEL specifications. The BPEL modifier oversees
the changing of process definitions and thus of all future
process instances.

The repository contains the data required for other com-
ponents to operate correctly and tracks the processes that
the system manages, as well as the versions associated

Service-Oriented
Dynamic Software
Product Lines

WHY SERVICE-ORIENTED ARCHITECTURE?

I n its simplest form, a service-oriented architecture (SOA) is a
pattern that helps designers understand what qualities would be

beneficial in a complex system.1 SOA-based systems build on the
notion of services—loosely coupled, self-describing, coarse-
grained components accessed using well-defined standards, such
as the Web Service Description Language and the Simple Object
Access Protocol.

Services simplify the integration of complex systems and allow
them to more flexibly accommodate change. Integration is simpler
because there is no need to download and deploy the desired ser-
vices: users merely access them remotely in a standard way. Loose
coupling and the use of dynamic- or late-binding techniques make the
most appropriate services available at runtime during any given
situation.

The main SOA system development task is composition. A BPEL
process establishes the order of message exchanges between a cen-
tralized entity, or BPEL engine, and its external partner services. An
extended BPEL engine also executes business-oriented models after
the proper automatic transformations.

Although initial acceptance has been high, time has shown BPEL to
be fundamentally flawed in its ability to support change. Neither BPEL
nor its execution engines support the modification of a process model
or its instances after deployment.2 Partner services can be substituted
at runtime, but such a task becomes impractical or too complex when
the change space involves thousands of services or when some ser-
vices are unknown at design time.

In addition, BPEL does not support more complex changes, such as
the substitution of entire process fragments. Consequently, although
SOA-based systems have flourished, BPEL and the other well-known
technologies can still only partially support changes.

References
 1. M. Papazoglou, Web Services: Principles and Technology, Pearson-Prentice

Hall, 2007.
 2. F. Curbera et al., “Implementing BPEL4WS: The Architecture of a BPEL4WS

Implementation,” Concurrency and Computation: Practice and Experience,
vol. 18, no. 10, 2006, pp. 1219-1228.

 44 COMPUTER

Block activities must not interrupt
any conversation with partner
services and cannot occur unless
all internal state variables are in
a consistent state.

COVER FE ATURE

with each process and the number of running instances
that comply with each version (T1 and T2 in Figure 1). It
also stores the changes that need to be applied to the ex-
ecuting instances when they need to be migrated to a new
version (T2).

Managing change
Each change must define its type (such as add or

remove), the point in the process in which the system
should temporarily block execution to apply the change
(block activity), and what will be added (definition) or
removed (id). Elements to add or remove include single
primitive/structured activities (for example, a complete
sequence or flow), variables, and partner links. If a modifi-
cation adds an element, there must also be a target activity
specification that identifies where in the process the new
elements are to go.

These changes could introduce process inconsisten-
cies, but DyBPEL is concerned only with providing the
right means to enact the changes. State-of-the-art tools5
are available to analyze the feature model and thus the
soundness of foreseen changes.

Block activities must not interrupt any conversation
with partner services and cannot occur unless all inter-
nal state variables are in a consistent state. Consequently,
the system cannot perform changes while it is executing
activities that are part of transactions. For example, the
system can add or remove partner links only if it has not
yet activated the scopes that encapsulate them. Also, the
block activity should be immediately before the target ac-
tivity and not contained in any transactional scope. Once
the system has executed the block activity, it can no longer
apply the change, and the process instance continues its
execution untouched.

The runtime modifier intercepts the execution of the
running process instances and applies the changes stored
in the repository. To empower this component, we extend
ActiveBPEL through aspect-oriented programming4 and
AspectJ (www.eclipse.org/aspectj). At the end of each
activity, an aspect intercepts process execution, and
the advice associated with the aspect checks if the re-
pository contains changes that need to be applied at that
point. If so, the runtime modifier operates the changes
directly on the internal object representing that particu-
lar process instance (ActiveBPEL creates these objects).

Another aspect intercepts the start and end of each process
instance to update the repository.

The BPEL modifier handles the migration of process
definitions to new configurations. It retrieves the latest
process version from the repository and modifies it ac-
cording to the substitutions defined in the coordinator’s
configuration change request.

Essentially, the BPEL modifier creates a new end point
to distinguish the new process version from the previ-
ous ones and stores the new end point’s definition in the
ActiveBPEL’s deployment descriptor file to redirect new
requests to the latest process version. The repository also
stores a record identifying the latest process version.

VARIABILITY DESIGN
To select a particular product or configuration and com-

municate to DyBPEL, we created Variability Designer, a tool
that uses parts of CVL to represent the admissible variants
characterizing a product line. A simple system to automate
appliance control in a smart home illustrates the interplay
between CVL and DyBPEL. Figure 2 shows the system’s
product variants and the configurations it can generate.

Base model
CVL choices provide a user-centric description of vari-

ability, representing both mandatory and optional features
(variants). We use feature models to represent CVL choices
since they can express a rich set of relationships among
features. A feature model has a tree structure, and a group
of child features can be either alternative or mandatory. A
feature can also require another feature, or two features
can exclude one other.

The system turns heating on (On) when the temperature
is too low and switches it off (Off) when it becomes too hot.
It also reduces the target temperature (Set temperature) if
the energy consumption is peaking. The system switches
the lights on when a person enters the room (On if present),
and turns them off when no one is there (Off if not present).
It can also trigger the alarm as soon as it detects motion
from an intruder (Trigger alarm if present), but it excludes
the option of turning lights on.

We use a base model as a starting point to define vari-
ability, which in this case is a BPEL process. The base
model includes the process variables, activities, and part-
ner links necessary to support the system’s mandatory
features—the partner services that monitor temperature
(pt), control energy consumption (pe), and manage the
heater (ph). When the temperature is too low, the pro-
cess receives a lowTemp message from the pt service,
and consequently invokes the ph service to switch the
heater on. As soon as the system detects an energy peak,
the process receives the energyPeak message from the
pe service. If the energy peak is tolerable, the process
invokes the pt service to reduce the target temperature

 OCTOBER 2012 45

Figure 2. Automating domestic appliances in a smart home. In this CVL-based feature model, the feature variants (left) gener-
ate two DSPL configurations (right). Heating control is mandatory (dark dot); light and alarm controls are optional. The top
configuration involves only light; the bottom configuration accommodates both light and alarm controls.

to temp; if it is not, the process invokes the ph service to
switch the heater off.

Expressing variants
To define variants, we use a CVL library to represent

additional process elements—from variables and partner
links to structured activities. In our example, the library
includes P1 and P2, process fragments that supply the
features to implement light and alarm controls. P1 includes
partner services for controlling lights (pl) and for manag-
ing the presence sensor (po). When the po service detects
a person, it sends the process an Occupancy message.
Subsequently, the process invokes the pl ser-
vice to switch the light on. When po does not
detect anyone for a certain period, it sends
the process an !Occupancy message, and
the process invokes pl to switch the light off.

P2 also includes po but adds a partner
service to control the alarm (pa). Each time
the homeowner turns on the alarm, the pro-
cess receives a switchOn message. It then
waits for one of two messages: a message
from po that reveals the presence of an in-
truder, which signals it to trigger the alarm,

or a message from pa that the system has switched off the
alarm (switchOff).

Every model variant is expressed in terms of substitu-
tions that it needs to incorporate into the base model to
include that variant. A substitution comprises a placement
and a replacement. A placement refers to an element in the
process definition, and it indicates where in the process to
add the replacement element, such as a variable or partner
link or an activity. Table 1 shows the substitutions and their
roles for the smart home example.

If a substitution has no replacement, the system removes
the element that the placement identifies. For example,

Replacement: /process[@name='P1']/.../
partnerLink[@name='po']

Placement: /process/partnerLinks

Replacement: .../onMessage[po, !Occupancy]
Placement: /process/while/pick
Replacement: .../onMessage[po, Occupancy]
Placement: /process/while/pick

Replacement: .../onMessage[pa, Switch on]
Placement: /process/while/pick

S1

S2

S3

S4

S5

S6

DSPL1

DSPL2

Replacement: /process[@name='P1']/.../
partnerLink[@name='pl']

Placement: /process/partnerLinks

Replacement: /process[@name='P2']/.../
partnerLink[@name='pa']

Placement: /process/partnerLinks

CVL choices (feature model)

Appliances
control

Heating
control

On O! Set
temperature

On if
present

[S1,S2, S4]

Light
control

O! if not
present

[S1, S2, S5]

Alarm
control

Trigger alarm
if present

[S1, S3, S6]

Base model (BPEL)
Substitutions

while
[!terminate]

pick

onMessage
(pe, Energy peak)

onMessage
(pt, Low temp)

invoke
[ph, On] invoke

[ph, O!]
invoke

[ph, Temp]

CVL library

P1 P2

onMessage
[po, Occupancy]

invoke
[pl, switchOn]

onMessage
[po, !Occupancy

invoke
[pl, switchO!]

onMessage
[pa, Switch on]

invoke/receive
[pa, Switch o!]

onMessage
[po, Occupancy]

invoke
[pa, Trigger alarm]

pick pick

pick

Light control

Product
realization while

[!terminate]

pick

while
[!terminate]

pick
Light control

Alarm control

 present

onMessage
(pe, Energy peak)

onMessage
(pt, Low temp)

invoke
[ph, On] invoke

[ph, O!]
invoke

[ph, Temp]

onMessage
[po, Occupancy]

invoke
[pl, Switch on]

pickonMessage
[po, !Occupancy

invoke
[pl, Switch o!]

onMessage
(pe, Energy peak)

onMessage
(pt, Low temp)

invoke
[ph, On] invoke

[ph, O!]
invoke

[ph, Temp]

onMessage
[po, !Occupancy]

invoke
[pl, Switch o!]

onMessage
[pa, Switch on]

pick

invoke/receive
[pa, Switch o!]

onMessage
[po, Occupancy]

invoke
[pa, Trigger alarm]

Table 1. Substitutions in the smart home example.

Substitution Role

S1 Adds service po to the partner links managed by the process

S2 Adds service pl to the partner links managed by the process

S3 Adds service pa to the partner links managed by the process

S4 Adds onMessage[po, Occupancy] to the activities managed by the pick

S5 Adds onMessage[po, !Occupancy] to the activities managed by the pick

S6 Adds onMessage [pa, Switch on] to the activities managed by the pick

 46 COMPUTER

COVER FE ATURE

to apply “Off if not present,” the system must perform
substitutions S1, S2, and S5. S1 and S2 add the pl and po
services, respectively. In both cases, placement points to
the base model’s partnerLinks element; replacement refers
to the partnerLink elements in P1 that are associated with
pl and po. S5 adds the need to insert the onMessage[po,
!Occupancy] activity to the onMessage activities the pick
activity manages.

Through CVL’s product realization function, product
configuration can include the process of selecting variants.
An initial configuration includes only mandatory features,
and it is impossible to generate a new product if selected
variants are in conflict. After the designer identifies an
admissible set of process variants, the system sends the
information about the needed substitutions to DyBPEL. For
example, if the designer selects the light control feature
and all its subfeatures, the system sends substitutions S1,
S2, S4, and S5 to DyBPEL.

The coordinator starts the change process by creat-
ing a new record in the repository for each partner link
to be added. In this case, the block activity precedes the
one containing the first use of the pl and po services. The
replacements defined in S1 and S2 provide the definitions
of these partner links.

The coordinator then creates a new record for adding
the activities referred to in the replacements of S4 and S5.
The block activity is one of the last activities of the onMes-
sage sequences that the pick activity manages (invoke[ph,
On], invoke[ph, Off], and invoke[ph, temp]). The S4 and
S5 replacements refer to the necessary additional activi-
ties. The S4 and S5 placements identify the target activity.
Finally, the coordinator also generates, deploys, and stores
a new process definition in the repository so that future
process instances can comply with it.

Another product configuration might add the “Start
alarm if present” feature, which sets up a conflict with
“On if present.” If the system removes the latter feature
to resolve the conflict, it must reverse the substitutions
made to incorporate that feature in the first place. Thus, if

a substitution adds a set of activities, variables, and partner
links, the system must remove what was added. Likewise,
if a substitution removes elements, reverting to the con-
figuration before that substitution requires adding those
elements back in.

When the homeowner selects new features, the Vari-
ability Designer sends the corresponding substitutions to
the coordinator. The removal of the “On if present” fea-
ture causes S4 to be reverted. S1 and S2 are not reverted,
since they are still necessary to support the “Off if not
present” feature. To revert S4, the system removes the
onMessage[po, Occupancy] activity and all its subactivi-
ties. The coordinator creates a record in the repository that
indicates that removal: the id is the identifier of the activity
to be removed and the block activity is the same one used
in the previous configuration to apply S4. Applying substi-
tutions S3 and S6 adds the “Start Alarm if present” feature.
The coordinator creates a new record in the repository to
add the pa service and onMessage[pa, Switch on] activity.

EVALUATING MIGRATION TIME
DyBPEL executes process specifications and migrates

them from one configuration to another at runtime. Using
aspect-oriented programming to define the entire DSPL
can cause significant problems.6 Typically, a feature has
a higher abstraction level than an aspect; indeed, many
aspects can represent a single feature. Thus, defining
variability through aspect-oriented programming could
become unmanageable and significantly degrade perfor-
mance during production execution.

To avoid this problem, we rely on CVL to separate fea-
ture definition from the runtime mechanism that creates
and executes the product line.

Table 2 illustrates the time the coordinator and the BPEL
modifier take to migrate the process definition. Migra-
tion overhead stems primarily from the BPEL modifier,
which must deploy the new process version and create
a corresponding entry in the repository. This overhead is
independent of the change management process; it is due
mainly to the way ActiveBPEL works.

Table 3 gives the time to migrate running process in-
stances. Retrieval is the time to retrieve a modification from
the repository; change is the time to apply the changes. In
our example, the time to dynamically modify the process
is approximately 10 percent of the time needed to perform
the pick activity (in which the modification takes place). The
overhead of retrieving the changes from the repository is
approximately 25 percent of the execution time.

Although this evaluation is preliminary, the results
reflect the disadvantage of using aspect-oriented program-
ming.3 Our approach is clearly intrusive, since it interrupts
the process execution at the end of each activity. How-
ever, using an optimized database design and in-memory
solutions is likely to significantly improve both sets of mi-

Table 2. Time to migrate process definitions.

Specification Average time (s) Median (s) Variance

Coordinator 0.1515 0.141 0.0035

BPEL modifier 0.1302 0.115 0.0043

Table 3. Time to migrate running process instances.

Process
instance Average time (s) Median (s) Variance

Retrieval 0.0463 0.045 0.00002

Change 0.0198 0.019 0.00001

Pick 0.2472 0.2485 0.0001

 OCTOBER 2012 47

gration times. Even so, the migration of running process
instances is not trivial and requires evaluating the tradeoff
between delay and update criticality. Should the system
postpone updates to complete running instances?

The problem becomes even more complex if we also
consider process instances that cannot be migrated be-
cause their execution has already passed the point where
the changes would need to be applied. Suitable rollback
activities could restore the execution to a previous state,
but the times would then be considerably higher than the
figures in the table.

C onverging DSPLs and SOAs provides a comprehen-
sive adaptability solution, while DyBPEL contributes
the machinery to manage and execute the result-

ing models. As the “Raising the Adaptability Bar” sidebar
describes, we believe our solution has the potential for
broad application because, on the one hand, it brings
adaptability to DSPLs, and on the other, it provides BPEL
process designers with the modeling support they need
to understand and embrace more variability.

Our solution is not limited to BPEL; developers can exploit
other business-oriented languages such as Business Process
Modeling Notation to model the process and have BPEL be
the hidden execution language (www.bpm.scitech.qut.edu.
au/research/projects/oldprojects/babel/tools). Thus, a next
step is to investigate modeling the product line with these
different languages. Regardless of the language chosen, we
have demonstrated the feasibility of combining the best of
two worlds: CVL’s flexibility and BPEL’s structure.

Acknowledgments
The DyBPEL prototype is available free at http://home.dei.
polimi.it/guinea/DyBPEL/DyBPEL.zip.

This work was supported, in part, by Science Foundation
Ireland grant 10/CE/I1855 to Lero, and by the European Com-
mission, Programmes: IDEAS-ERC, Project 227977 SMScom,
and FP7-ICT-2009-5, Project Indenica 257483.

References
 1. D. Krafzig, K. Bamke, and D. Slama, Enterprise SOA:

Service-Oriented Architecture Best Practices, Prentice Hall,
2005.

RAISING THE ADAPTABILITY BAR

Emerging domains, new business needs, and novel applications
require higher degrees of adaptability that traditional software

programming languages cannot provide. In this context, some work
emphasizes the convergence between DSPLs and SOAs,1,2 but it
typically resolves around the (simplistic) idea that features should
map onto atomic services. For example, an extended version of Sassy,3
a model-driven framework for self-architecting software systems,
proposes the creation of a mapping between features and services.
DSPLs need better support to describe their properties, such as
dynamic variability and dynamic variation points, as well as the
variants.4

A language for describing configurable reference models is a move
in this direction, for example, to support the context-dependent con-
figuration of processes, functions, and resources.5 Unfortunately, the
separation of concerns between base and additional features remains
blurred, while CVL-based solutions foster it and thus help manage
large, complex DSPLs.

The use of aspect-oriented programming to implement a DSPL is
another option. This solution, also known as feature-oriented pro-
gramming, fosters the implementation of features as aspects. For
example, K@RT, an aspect-oriented and model-driven DSPL frame-
work,6 is based on runtime models that the system can modify during
execution and check against constraints to ensure that reconfigura-
tion is safe.

Another approach7 uses dynamic aspects and runtime models to
detect and solve context-dependent interactions among features.
The designer models the reconfiguration of interacting features, and
the runtime support ensures that the DSPL is delivered without con-
flicts. Although promising, the approach is still missing important
features such as the possibility to add business rules, and thus change
the dynamism of the system, during execution.

Finally, some solutions address dynamism by relying on context
information. CAPucine8 builds context-aware service-oriented prod-
uct lines in which product derivations monitor their execution context

and react by including appropriate software assets into the system.
Provop9 models a process family: while focusing on the relationships
between variants and contexts, its runtime support can configure a
specific process variant, but it cannot modify it at runtime.

References
 1. R. Krut and S.C. Cohen, “Service-Oriented Architectures and Software

Product Lines—Putting Both Together,” Proc. 11th Int’l Software Product
Line Conf. (SPLC 08), IEEE CS, 2008, p. 383.

 2. P. Istoan et al., “Dynamic Software Product Lines for Service-Based Sys-
tems,” Proc. 9th Int’l Conf. Computer and Information Technology (CCIT 09),
IEEE CS, 2009, pp. 193-198.

 3. H. Gomaa and K. Hashimoto, “Dynamic Software Adaptation for Service-
Oriented Product Lines,” Proc. 15th Int’l Software Product Lines Conf. (SPLC
11) workshop proc. vol. 2, I. Shaefer, I. John, and K. Schmid, eds., ACM, 2011,
article 35.

 4. S. O. Hallsteinsen et al., “Dynamic Software Product Lines,” Computer, Apr.
2008, pp. 93-95.

 5. M. Rosemann and W.M.P. van der Aalst, “A Configurable Reference Model-
ing Language,” Information Systems, vol. 32, no. 1, 2007, pp. 1-23.

 6. B. Morin, O. Barais, and J.-M. Jézéquel, “K@RT: An Aspect-Oriented and
Model-Oriented Framework for Dynamic Software Product Lines,” Proc.
3rd Int’l Workshop Models@Runtime, ACM, 2008, pp. 127-136; www.irisa.fr/
triskell/publis/2008/Morin08e.pdf.

 7. T. Dinkelaker et al., “A Dynamic Software Product Line Approach Using
Aspect Models at Runtime,” Proc. 1st Int’l Workshop Composition: Objects,
Aspects, Components, Services and Product Lines, CEUR, 2010; http://
tubiblio.ulb.tu-darmstadt.de/52434.

 8. C. Parra, S. Blanc, and L. Duchien, “Context Awareness for Dynamic
Service-Oriented Product Lines,” Proc. 13th Int’l Software Product Line
Conf. (SPLC 09), IEEE CS, 2009, pp. 131-140.

 9. A. Hallerbach, T. Bauer, and M. Reichart, “Capturing Variability in Business
Process Models: The Provop Approach,” J. Software Maintenance, vol. 22,
no. 6-7, 2010, pp. 519-546.

COVER FE ATURE

 48 COMPUTER

 2. H. Giese and B.H.C. Cheng, eds., Proc. ICSE Symp. Soft-
ware Engineering for Adaptive and Self-Managing Systems
(SEAMS 11), ACM, 2011.

 3. L. Baresi and S. Guinea, “Self-Supervising BPEL Processes,”
IEEE Trans. Software Eng., vol. 37, no. 2, 2011, pp. 247-263.

 4. G. Kiczales et al., “Aspect-Oriented Programming,” Proc.
11th European Conf. Object-Oriented Programming (ECOOP
97), Springer, 1997, pp. 220-242.

 5. D. Nebavides, S. Segura, and A.R. Cortés, “Automated Anal-
ysis of Feature Models 20 Years Later: A Literature Review,”
Information Systems, vol. 35, no. 6, 2010, pp. 615-636.

 6. C. Kästner, S. Apel, and D.S. Batory, “A Case Study Imple-
menting Features Using Aspect J,” Proc. 11th Int’l Software
Product Lines Conf. (SPLC 07), IEEE CS, 2007, pp. 223-232.

Luciano Baresi is an associate professor of computer sci-
ence at Politecnico di Milano, Italy. His research interests
include distributed, dynamic, and mobile systems for
service-oriented computing and the Web as well as software
engineering. Baresi received a PhD in computer science

 Selected CS articles and columns are available
 for free at http://ComputingNow.computer.org.

NEW from

ESSENCE OF IT PRO 2011
Edited by San Murugesan
and Simon Y. Liu
Presents a snapshot of current issues, develop-
ments, and trends in IT—next generation Web
apps, information security, social networking and
Enterprise 2.0, RFID, greening IT, and essential
skills for IT professionals—through ten articles
published in IT Professional magazine in 2011,
an original introduction, and an extensive list of
recommended further reading.

Order Online:

from Politecnico di Milano. He is on the editorial board
of Transactions on Autonomous and Adaptive Systems.
Contact him at baresi@elet.polimi.it.

Sam Guinea is an assistant professor of computer science
at Politecnico di Milano, Italy. His research interests include
the application of software engineering principles to the
design and runtime management of service-based systems.
Guinea received a PhD in computer science from Politecnico
di Milano. Contact him at guinea@elet.polimi.it.

Liliana Pasquale is a postdoctoral researcher in computer
science at Lero—the Irish Software Engineering Research
Centre. Her research interests include software require-
ments engineering, self-adaptive systems, service-based
systems, security, and digital forensics. Pasquale received
a PhD in computer science from Politecnico di Milano. Con-
tact her at liliana.pasquale@lero.ie.

