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If the need for a feature materializes at runtime, the 
software system can use a DSPL to cope with that change 
by switching from one variant to another while executing. 
The DSPL feature model ensures that the system moves 
from one consistent configuration to another and that it 
satisfies the feature constraints. However, switching from 
one variant to another might not be enough. Functionality 
might need to vary to cope with unforeseen situations, and 
the feature model itself might need alteration to accommo-
date new variability; thus, the model itself must become a 
live runtime entity.

As the “Why Service-Oriented Architecture?” sidebar 
describes, SOAs have proven cost-effective in developing 
flexible and dynamic software systems,1 and we believe 
there are significant mutual advantages in converging 
SOAs and DSPLs. The loose coupling in SOAs can pro-
vide DSPLs with the technical underpinnings of flexible 
feature management—underpinnings that are grounded 
in the considerable work to develop self-adaptive SOA 
systems2,3 and in extensive studies of monitoring and 
adaptation techniques. DSPLs, in turn, can provide the 
modeling framework to understand a self-adaptive SOA-
based system by highlighting the relationships among its 
parts. Software system architects can use these models 
to understand the implications of modifying a system’s 
configuration at runtime.

To encourage this convergence, we are experimenting 
with how to enrich Business Process Execution Language 
(BPEL) compositions with dynamic variability manage-
ment. Our solution is to use the Common Variability 
Language (CVL) to augment BPEL processes with variabil-
ity, which makes it possible to easily generate a DSPL and 
use a dynamic version of BPEL to manage and run it. To 

A s software systems become increasingly dynamic 
and complex, configuration management must 
keep pace with a host of changing requirements 
and context-awareness demands. The cost 

of explicitly identifying and managing all possible fea-
ture configurations in such dynamic systems can easily 
become prohibitive, and designers cannot always pin-
point alternatives early on. Consequently, systems must be 
able to react to changes and adjust their behavior as they 
execute: in short, runtime adaptation is rapidly becoming 
essential to software system design.

Developers conceived software product lines to distin-
guish the various features of a system family and organize 
those features into meaningful configurations. Designers 
adopt a feature model to identify the software product 
line’s common and variant features. This model describes 
feature constraints, such as if features require or exclude 
one another. Because many modern systems elicit actual 
requirements only at runtime, they select, deploy, and act 
on their features only while they are executing. This idea 
is central to the advent of dynamic software product lines 
(DSPLs), which extend software product lines to support 
late variability.

An operational example of controls in a 
smart home demonstrates the potential of 
a solution that combines the Common Vari-
ability Language and a dynamic extension 
of the Business Process Execution Language 
to address the need to manage software 
system variability at runtime.
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Figure 1. DyBPEL architecture. DyBPEL extends ActiveBPEL so that the service composi-
tion (process) can adapt to changes during its operation. From the Variability Designer, 
the coordinator receives a change request with the name of the process to be migrated 
and the set of substitutions to apply, which it then dispatches to the runtime and BPEL 
modifiers. The repository stores these changes and the data that other elements need 
to operate correctly.

validate our approach, we explored how to use it to auto-
mate the domestic systems, such as heating and lighting, 
in a smart home.

DYNAMIC BPEL
Our proposed solution is based on Dynamic BPEL 

(DyBPEL),2 a tool that complements the widely used Active-
BPEL execution engine (www.activebpel.org) with runtime 
adaptation capabilities. DyBPEL exploits aspect-oriented 
programming4 to dynamically change the features bound 
to variation points as well as 
to alter the variation points 
themselves. Replacing a fea-
ture does not simply mean 
substituting a partner service. 
A feature can be a complex 
fragment of BPEL code, and 
as such, it can aggregate—
and interact with—remote 
services and access the pro-
cess’s internal variables. Thus, 
BPEL processes can cope 
with unexpected changes 
in requirements, resource 
availability, and execution 
environment. 

Architectural overview
Figure 1 shows DyBPEL’s 

architecture. The Variability 
Designer, which is based on 
the Eclipse CVL plug-in, pro-
vides a new configuration 
along with a change request 
to the coordinator, which 

oversees the migration of running instances and process 
definitions from one configuration (or version) to another. 
The runtime modifier is in charge of migrating the run-
ning process instances and embeds ActiveBPEL, which 
executes BPEL specifications. The BPEL modifier oversees 
the changing of process definitions and thus of all future 
process instances. 

The repository contains the data required for other com-
ponents to operate correctly and tracks the processes that 
the system manages, as well as the versions associated 
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WHY SERVICE-ORIENTED ARCHITECTURE?

I n its simplest form, a service-oriented architecture (SOA) is a 
pattern that helps designers understand what qualities would be 

beneficial in  a complex system.1 SOA-based systems build on the 
notion of services—loosely coupled, self-describing, coarse-
grained components accessed using well-defined standards, such 
as the Web Service Description Language and the Simple Object 
Access Protocol.

Services simplify the integration of complex systems and allow 
them to more flexibly accommodate change. Integration is simpler 
because there is no need to download and deploy the desired ser-
vices: users merely access them remotely in a standard way. Loose 
coupling and the use of dynamic- or late-binding techniques make the 
most appropriate services available at runtime during any given 
situation.

The main SOA system development task is composition. A BPEL 
process establishes the order of message exchanges between a cen-
tralized entity, or BPEL engine, and its external partner services. An 
extended BPEL engine also executes business-oriented models after 
the proper automatic transformations.

Although initial acceptance has been high, time has shown BPEL to 
be fundamentally flawed in its ability to support change. Neither BPEL 
nor its execution engines support the modification of a process model 
or its instances after deployment.2 Partner services can be substituted 
at runtime, but such a task becomes impractical or too complex when 
the change space involves thousands of services or when some ser-
vices are unknown at design time.

In addition, BPEL does not support more complex changes, such as 
the substitution of entire process fragments. Consequently, although 
SOA-based systems have flourished, BPEL and the other well-known 
technologies can still only partially support changes.
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with each process and the number of running instances 
that comply with each version (T1 and T2 in Figure 1). It 
also stores the changes that need to be applied to the ex-
ecuting instances when they need to be migrated to a new 
version (T2).

Managing change
Each change must define its type (such as add or 

remove), the point in the process in which the system 
should temporarily block execution to apply the change 
(block activity), and what will be added (definition) or 
removed (id). Elements to add or remove include single 
primitive/structured activities (for example, a complete 
sequence or flow), variables, and partner links. If a modifi-
cation adds an element, there must also be a target activity 
specification that identifies where in the process the new 
elements are to go. 

These changes could introduce process inconsisten-
cies, but DyBPEL is concerned only with providing the 
right means to enact the changes. State-of-the-art tools5 
are available to analyze the feature model and thus the 
soundness of foreseen changes.

Block activities must not interrupt any conversation 
with partner services and cannot occur unless all inter-
nal state variables are in a consistent state. Consequently, 
the system cannot perform changes while it is executing 
activities that are part of transactions. For example, the 
system can add or remove partner links only if it has not 
yet activated the scopes that encapsulate them. Also, the 
block activity should be immediately before the target ac-
tivity and not contained in any transactional scope. Once 
the system has executed the block activity, it can no longer 
apply the change, and the process instance continues its 
execution untouched.

The runtime modifier intercepts the execution of the 
running process instances and applies the changes stored 
in the repository. To empower this component, we extend 
ActiveBPEL through aspect-oriented programming4 and  
AspectJ (www.eclipse.org/aspectj). At the end of each 
activity, an aspect intercepts process execution, and 
the advice associated with the aspect checks if the re-
pository contains changes that need to be applied at that 
point. If so, the runtime modifier operates the changes 
directly on the internal object representing that particu-
lar process instance (ActiveBPEL creates these objects).  

Another aspect intercepts the start and end of each process 
instance to update the repository.

The BPEL modifier handles the migration of process 
definitions to new configurations. It retrieves the latest 
process version from the repository and modifies it ac-
cording to the substitutions defined in the coordinator’s 
configuration change request. 

Essentially, the BPEL modifier creates a new end point 
to distinguish the new process version from the previ-
ous ones and stores the new end point’s definition in the 
ActiveBPEL’s deployment descriptor file to redirect new 
requests to the latest process version. The repository also 
stores a record identifying the latest process version.

VARIABILITY DESIGN
To select a particular product or configuration and com-

municate to DyBPEL, we created Variability Designer, a tool 
that uses parts of CVL to represent the admissible variants 
characterizing a product line. A simple system to automate 
appliance control in a smart home illustrates the interplay 
between CVL and DyBPEL. Figure 2 shows the system’s 
product variants and the configurations it can generate.

Base model
CVL choices provide a user-centric description of vari-

ability, representing both mandatory and optional features 
(variants). We use feature models to represent CVL choices 
since they can express a rich set of relationships among 
features. A feature model has a tree structure, and a group 
of child features can be either alternative or mandatory. A 
feature can also require another feature, or two features 
can exclude one other. 

The system turns heating on (On) when the temperature 
is too low and switches it off (Off) when it becomes too hot. 
It also reduces the target temperature (Set temperature) if 
the energy consumption is peaking. The system switches 
the lights on when a person enters the room (On if present), 
and turns them off when no one is there (Off if not present). 
It can also trigger the alarm as soon as it detects motion 
from an intruder (Trigger alarm if present), but it excludes 
the option of turning lights on.

We use a base model as a starting point to define vari-
ability, which in this case is a BPEL process. The base 
model includes the process variables, activities, and part-
ner links necessary to support the system’s mandatory 
features—the partner services that monitor temperature 
(pt), control energy consumption (pe), and manage the 
heater (ph). When the temperature is too low, the pro-
cess receives a lowTemp message from the pt service, 
and consequently invokes the ph service to switch the 
heater on. As soon as the system detects an energy peak, 
the process receives the energyPeak message from the 
pe service. If the energy peak is tolerable, the process 
invokes the pt service to reduce the target temperature 
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Figure 2. Automating domestic appliances in a smart home. In this CVL-based feature model, the feature variants (left) gener-
ate two DSPL configurations (right). Heating control is mandatory (dark dot); light and alarm controls are optional.  The top 
configuration involves only light; the bottom configuration accommodates both light and alarm controls.

to temp; if it is not, the process invokes the ph service to 
switch the heater off.

Expressing variants
To define variants, we use a CVL library to represent 

additional process elements—from variables and partner 
links to structured activities. In our example, the library 
includes P1 and P2, process fragments that supply the 
features to implement light and alarm controls. P1 includes 
partner services for controlling lights (pl) and for manag-
ing the presence sensor (po). When the po service detects 
a person, it sends the process an Occupancy message. 
Subsequently, the process invokes the pl ser-
vice to switch the light on. When po does not 
detect anyone for a certain period, it sends 
the process an !Occupancy message, and 
the process invokes pl to switch the light off.

P2 also includes po but adds a partner 
service to control the alarm (pa). Each time 
the homeowner turns on the alarm, the pro-
cess receives a switchOn message. It then 
waits for one of two messages: a message 
from po that reveals the presence of an in-
truder, which signals it to trigger the alarm, 

or a message from pa that the system has switched off the 
alarm (switchOff).

Every model variant is expressed in terms of substitu-
tions that it needs to incorporate into the base model to 
include that variant. A substitution comprises a placement 
and a replacement. A placement refers to an element in the 
process definition, and it indicates where in the process to 
add the replacement element, such as a variable or partner 
link or an activity. Table 1 shows the substitutions and their 
roles for the smart home example.

If a substitution has no replacement, the system removes 
the element that the placement identifies. For example, 

Replacement:  /process[@name='P1']/.../
partnerLink[@name='po']

Placement:  /process/partnerLinks

Replacement:  .../onMessage[po, !Occupancy]
Placement:  /process/while/pick
Replacement:  .../onMessage[po, Occupancy]
Placement:  /process/while/pick

Replacement:  .../onMessage[pa, Switch on]
Placement:  /process/while/pick

S1

S2

S3

S4

S5

S6

DSPL1

DSPL2

Replacement:  /process[@name='P1']/.../
partnerLink[@name='pl']

Placement:  /process/partnerLinks

Replacement:  /process[@name='P2']/.../
partnerLink[@name='pa']

Placement:  /process/partnerLinks

CVL choices (feature model)

Appliances
control 

Heating
control

On O! Set
temperature

On if 
present

[S1,S2, S4]

Light
control

O! if not 
present

[S1, S2, S5]

Alarm
control

Trigger alarm 
if present

[S1, S3, S6]

Base model (BPEL)
Substitutions

while
[!terminate]

pick

onMessage
(pe, Energy peak)

onMessage
(pt, Low temp)

invoke
[ph, On] invoke

[ph, O!]
invoke

[ph, Temp]

CVL library

P1 P2

onMessage
[po, Occupancy]

invoke
[pl, switchOn]

onMessage
[po, !Occupancy

invoke
[pl, switchO!]

onMessage
[pa, Switch on]

invoke/receive
[pa, Switch o!]

onMessage
[po, Occupancy]

invoke
[pa, Trigger alarm]

pick pick

pick

Light control 

Product
realization while

[!terminate]

pick

while
[!terminate]

pick
Light control 

Alarm control

   present

onMessage
(pe, Energy peak)

onMessage
(pt, Low temp)

invoke
[ph, On] invoke

[ph, O!]
invoke

[ph, Temp]

onMessage
[po, Occupancy]

invoke
[pl, Switch on]

pickonMessage
[po, !Occupancy

invoke
[pl, Switch o!]

onMessage
(pe, Energy peak)

onMessage
(pt, Low temp)

invoke
[ph, On] invoke

[ph, O!]
invoke

[ph, Temp]

onMessage
[po, !Occupancy]

invoke
[pl, Switch o!]

onMessage
[pa, Switch on]

pick

invoke/receive
[pa, Switch o!]

onMessage
[po, Occupancy]

invoke
[pa, Trigger alarm]

Table 1. Substitutions in the smart home example. 

Substitution Role

S1 Adds service po to the partner links managed by the process

S2 Adds service pl to the partner links managed by the process

S3 Adds service pa to the partner links managed by the process

S4 Adds onMessage[po, Occupancy] to the activities managed by the pick

S5 Adds onMessage[po, !Occupancy] to the activities managed by the pick

S6 Adds onMessage [pa, Switch on] to the activities managed by the pick



 46 COMPUTER

COVER FE ATURE

to apply “Off if not present,” the system must perform 
substitutions S1, S2, and S5. S1 and S2 add the pl and po 
services, respectively. In both cases, placement points to 
the base model’s partnerLinks element; replacement refers 
to the partnerLink elements in P1 that are associated with 
pl and po. S5 adds the need to insert the onMessage[po, 
!Occupancy] activity to the onMessage activities the pick 
activity manages.

Through CVL’s product realization function, product 
configuration can include the process of selecting variants. 
An initial configuration includes only mandatory features, 
and it is impossible to generate a new product if selected 
variants are in conflict. After the designer identifies an 
admissible set of process variants, the system sends the 
information about the needed substitutions to DyBPEL. For 
example, if the designer selects the light control feature 
and all its subfeatures, the system sends substitutions S1, 
S2, S4, and S5 to DyBPEL. 

The coordinator starts the change process by creat-
ing a new record in the repository for each partner link 
to be added. In this case, the block activity precedes the 
one containing the first use of the pl and po services. The 
replacements defined in S1 and S2 provide the definitions 
of these partner links.

The coordinator then creates a new record for adding 
the activities referred to in the replacements of S4 and S5. 
The block activity is one of the last activities of the onMes-
sage sequences that the pick activity manages (invoke[ph, 
On], invoke[ph, Off], and invoke[ph, temp]). The S4 and 
S5 replacements refer to the necessary additional activi-
ties. The S4 and S5 placements identify the target activity. 
Finally, the coordinator also generates, deploys, and stores 
a new process definition in the repository so that future 
process instances can comply with it. 

Another product configuration might add the “Start 
alarm if present” feature, which sets up a conflict with 
“On if present.” If the system removes the latter feature 
to resolve the conflict, it must reverse the substitutions 
made to incorporate that feature in the first place. Thus, if 

a substitution adds a set of activities, variables, and partner 
links, the system must remove what was added. Likewise, 
if a substitution removes elements, reverting to the con-
figuration before that substitution requires adding those 
elements back in.

When the homeowner selects new features, the Vari-
ability Designer sends the corresponding substitutions to 
the coordinator. The removal of the “On if present” fea-
ture causes S4 to be reverted. S1 and S2 are not reverted, 
since they are still necessary to support the “Off if not 
present” feature. To revert S4, the system removes the 
onMessage[po, Occupancy] activity and all its subactivi-
ties. The coordinator creates a record in the repository that 
indicates that removal: the id is the identifier of the activity 
to be removed and the block activity is the same one used 
in the previous configuration to apply S4. Applying substi-
tutions S3 and S6 adds the “Start Alarm if present” feature. 
The coordinator creates a new record in the repository to 
add the pa service and onMessage[pa, Switch on] activity.

EVALUATING MIGRATION TIME
DyBPEL executes process specifications and migrates 

them from one configuration to another at runtime. Using 
aspect-oriented programming to define the entire DSPL 
can cause significant problems.6 Typically, a feature has 
a higher abstraction level than an aspect; indeed, many 
aspects can represent a single feature. Thus, defining 
variability through aspect-oriented programming could 
become unmanageable and significantly degrade perfor-
mance during production execution. 

To avoid this problem, we rely on CVL to separate fea-
ture definition from the runtime mechanism that creates 
and executes the product line.

Table 2 illustrates the time the coordinator and the BPEL 
modifier take to migrate the process definition. Migra-
tion overhead stems primarily from the BPEL modifier, 
which must deploy the new process version and create 
a corresponding entry in the repository. This overhead is 
independent of the change management process; it is due 
mainly to the way ActiveBPEL works.

Table 3 gives the time to migrate running process in-
stances. Retrieval is the time to retrieve a modification from 
the repository; change is the time to apply the changes. In 
our example, the time to dynamically modify the process 
is approximately 10 percent of the time needed to perform 
the pick activity (in which the modification takes place). The 
overhead of retrieving the changes from the repository is 
approximately 25 percent of the execution time.

Although this evaluation is preliminary, the results 
reflect the disadvantage of using aspect-oriented program-
ming.3 Our approach is clearly intrusive, since it interrupts 
the process execution at the end of each activity. How-
ever, using an optimized database design and in-memory 
solutions is likely to significantly improve both sets of mi-

Table 2. Time to migrate process definitions.

Specification Average time (s) Median (s) Variance

Coordinator 0.1515 0.141 0.0035

BPEL modifier 0.1302 0.115 0.0043

Table 3. Time to migrate running process instances.

Process 
instance Average time (s) Median (s) Variance

Retrieval 0.0463 0.045 0.00002

Change 0.0198 0.019 0.00001

Pick 0.2472 0.2485 0.0001
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gration times. Even so, the migration of running process 
instances is not trivial and requires evaluating the tradeoff 
between delay and update criticality. Should the system 
postpone updates to complete running instances? 

The problem becomes even more complex if we also 
consider process instances that cannot be migrated be-
cause their execution has already passed the point where 
the changes would need to be applied. Suitable rollback 
activities could restore the execution to a previous state, 
but the times would then be considerably higher than the 
figures in the table.

C onverging DSPLs and SOAs provides a comprehen-
sive adaptability solution, while DyBPEL contributes 
the machinery to manage and execute the result-

ing models. As the “Raising the Adaptability Bar” sidebar 
describes, we believe our solution has the potential for 
broad application because, on the one hand, it brings 
adaptability to DSPLs, and on the other, it provides BPEL 
process designers with the modeling support they need 
to understand and embrace more variability. 

Our solution is not limited to BPEL; developers can exploit 
other business-oriented languages such as Business Process 
Modeling Notation to model the process and have BPEL be 
the hidden execution language (www.bpm.scitech.qut.edu.
au/research/projects/oldprojects/babel/tools). Thus, a next 
step is to investigate modeling the product line with these 
different languages. Regardless of the language chosen, we 
have demonstrated the feasibility of combining the best of 
two worlds: CVL’s flexibility and BPEL’s structure. 
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RAISING THE ADAPTABILITY BAR

Emerging domains, new business needs, and novel applications 
require higher degrees of adaptability that traditional software 

programming languages cannot provide. In this context, some work 
emphasizes the convergence between DSPLs and SOAs,1,2 but it 
typically resolves around the (simplistic) idea that features should 
map onto atomic services. For example, an extended version of Sassy,3 
a model-driven framework for self-architecting software systems, 
proposes the creation of a mapping between features and services. 
DSPLs need better support to describe their properties, such as 
dynamic variability and dynamic variation points, as well as the 
variants.4

A language for describing configurable reference models is a move 
in this direction, for example, to support the context-dependent con-
figuration of processes, functions, and resources.5 Unfortunately, the 
separation of concerns between base and additional features remains 
blurred, while CVL-based solutions foster it and thus help manage 
large, complex DSPLs.

The use of aspect-oriented programming to implement a DSPL is 
another option. This solution, also known as feature-oriented pro-
gramming, fosters the implementation of features as aspects. For 
example, K@RT, an aspect-oriented and model-driven DSPL frame-
work,6 is based on runtime models that the system can modify during 
execution and check against constraints to ensure that reconfigura-
tion is safe. 

Another approach7 uses dynamic aspects and runtime models to 
detect and solve context-dependent interactions among features. 
The designer models the reconfiguration of interacting features, and 
the runtime support ensures that the DSPL is delivered without con-
flicts. Although promising, the approach is still missing important 
features such as the possibility to add business rules, and thus change 
the dynamism of the system, during execution.

Finally, some solutions address dynamism by relying on context 
information. CAPucine8 builds context-aware service-oriented prod-
uct lines in which product derivations monitor their execution context 

and react by including appropriate software assets into the system. 
Provop9 models a process family: while focusing on the relationships 
between variants and contexts, its runtime support can configure a 
specific process variant, but it cannot modify it at runtime.
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