
39

User-centric Adaptation Analysis of Multi-tenant Services

Jesús Garcı́a-Galán, University of Seville
Liliana Pasquale, Lero - the Irish Software Research Centre
Pablo Trinidad, University of Seville
Antonio Ruiz-Cortés, University of Seville

Multi-tenancy is a key pillar of cloud services. It allows different users to share computing and virtual re-
sources transparently, meanwhile guaranteeing substantial cost savings. Due to the trade-off between scala-
bility and customisation, one of the major drawbacks of multi-tenancy is limited configurability. Since users
may often have conflicting configuration preferences, offering the best user experience is an open challenge
for the service providers. Besides, the users, their preferences and the operational environment may change
during the service operation, jeopardising the satisfaction of user preferences. In this paper we present an
approach to support user-centric adaptation of multi-tenant services. We describe how to engineer the ac-
tivities of the MAPE (Monitoring, Analysis, Planning, Execution) loop to support user-centric adaptation,
and focus on the adaptation analysis. Our analysis computes a service configuration that optimises user
satisfaction, complies with infrastructural constraints, and minimises reconfiguration obtrusiveness when
user or service related changes take place. To support our analysis, we model multi-tenant services and user
preferences by using feature and preference models, respectively. We illustrate our approach by utilising
different cases of virtual desktops. Our results demonstrate the effectiveness of the analysis in improving
user preferences satisfaction in a negligible time.

Categories and Subject Descriptors: H.1.2 [Information Systems Applications]: User/Machine Sys-
tems—Human information processing; H.4.2 [Information Systems Applications]: Types of Systems—
Decision support

General Terms: Algorithms, Human Factors

ACM Reference Format:
Jesús Garcı́a-Galán, Liliana Pasquale, Pablo Trinidad, Antonio Ruiz-Cortés, 2014. User-centric Adaptation
Analysis of Multi-tenant Services ACM Trans. Autonom. Adapt. Syst. 9, 4, Article 39 (March 2015), 25 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Multi-tenancy allows cloud providers to deliver the same service to different cus-
tomers, which share physical and/or virtual resources transparently [Bezemer et al.
2010; Natis 2012]. Depending on the adopted cloud service model, users can share re-
sources at different levels, from hardware resources (e.g., CPU, storage) to software
applications. Multi-tenancy can support different degrees of isolation. In particular,
the lower the degree of isolation, the bigger the resources and cost savings, but the

This work was partially supported by the European Commission (FEDER), the Spanish and the Andalusian
R&D programmes (grants TIN2012-32273 (TAPAS), P12-TIC-1867 (COPAS) and TIC-5906 (THEOS)), the
Science Foundation Ireland grants 10/CE/I1855 and 13/RC/2094, and the ERC Advanced Grant (ASAP) no.
291652.
Author’s addresses: Jesús Garcı́a-Galán, Pablo Trinidad, Antonio Ruiz-Cortés, Dpto. Lenguajes y Sistemas
Informáticos. ETS Ingenierı́a Informática, Avda Reina Mercedes s/n. 41012, Seville, Spain; Liliana Pasquale,
Lero – the Irish Software Research Centre, Tierney Building, University of Limerick, Ireland.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1556-4665/2015/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:2 J.Garcı́a-Galán et al.

smaller the configurability. Limited configurability [Mietzner et al. 2009] is a major
drawback, especially when user preferences are not known in advance. Several ap-
proaches [Baresi et al. 2012; Kumara et al. 2013; Mietzner et al. 2009; Schroeter et al.
2012a,b] have been proposed to support dynamic configuration management of multi-
tenant services. Nonetheless, these contributions consider an isolated multi-tenant
model (i.e. each user is assigned to a different service instance), and focus on deploying
different isolated variants of a service instance at runtime.

Social adaptation [Ali et al. 2012] considers changes in the user collective judgement
as a new adaptation driver. Other approaches [Malek et al. 2012; Cardellini et al. 2012]
consider conflicting users preferences and limited infrastructural resources in the con-
struction of adaptive software systems. These approaches identify a system architec-
ture [Malek et al. 2012] or configure a service-oriented application that maximises QoS
preferences [Cardellini et al. 2012] when changes in the operational environment take
place. However, as far as we are aware, a user-centric approach has not been previously
proposed for the adaptation of multi-tenant services in cloud scenarios. To achieve this
aim, additional challenges have to be addressed. First, it is necessary to provide users
with high-level mechanisms to define and change their preferences on the possible
service configurations. Second, the adoption of a pay-as-you-go business model allows
users to join and leave a cloud service dynamically, which can have an impact on the
consumption of the infrastructural resources and may reduce the satisfaction of the
user preferences. Therefore, changes in the number of users and modifications of their
preferences have to be considered as a main adaptation trigger for the reconfiguration
of multi-tenant services.

In this paper, we characterise the user-centric adaptation of multi-tenant services
problem, focusing on the adaptation analysis. In our previous work [Garcı́a-Galán et al.
2014] we highlighted the challenges to be addressed for engineering the activities of
the MAPE (Monitoring, Analysis, Planning, Execution) loop [Kephart and Chess 2003]
necessary to support user-centric adaptation and proposed a preference-based analy-
sis that maximises in a balanced way the satisfaction of user preferences, which are
expressed on the possible service configurations. In this paper we extend our analy-
sis by incorporating infrastructural and obtrusiveness aspects. Infrastructural aspects
are necessary to guarantee that available infrastructural resources can handle the
workload generated by the selected service configuration and the tenants of the ser-
vice. Obtrusiveness aspects are taken into account to reduce the nuisance produced
by a service reconfiguration. Our adaptation analysis can be triggered when the users
or the operational environment (including available service configurations and infras-
tructural resources) change at runtime.

We illustrate and motivate our approach by utilising different cases of virtualised
desktops. Compared to our previous proposal, which focused on a hosted shared Desk-
top as a Service (DaaS), this paper extends the applicability of our analysis to dif-
ferent DaaS delivery models and, more generally, to different multi-tenant services.
We model the available service configurations, also referred as configuration space,
the infrastructural resources and the workload by using Feature Models (FMs) [Kang
et al. 1990]. We represent the user preferences by adopting an existing preference
model [Garcı́a et al. 2013]. Our adaptation analysis is interpreted as a multi-objective
constrained optimisation problem built on top of the Automated Analysis of Feature
Models (AAFM) [Benavides et al. 2010]. The optimisation problem is solved by using
metaheuristic algorithms [Marler and Arora 2004], which have been proved suitable
for FM optimisation in existing work [Guo et al. 2011; Sayyad et al. 2013]. We eval-
uate the effectiveness of the analysis on simulated scenarios where different tenants
– and their users – join and leave a DaaS and change their preferences. The results
obtained from our experimental evaluation are encouraging as they demonstrate that

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

User-centric Adaptation Analysis of Multi-tenancy 39:3

our adaptation analysis is able to calculate reconfigurations that improve and balance
the satisfaction of users preferences in a few seconds.

The rest of the paper is organised as follows. Section 2 provides some background on
multi-tenancy, DaaS and feature modelling. Section 3 illustrates our DaaS case study
and Section 4 introduces the user-centric adaptation problem and, in particular, the
adaptation analysis. Section 5 describes how multi-tenant services and preferences
are modelled to support the analysis, which in turn is presented in Section 6. Section 7
discusses our experimental results and Section 8 points out the open issues that will
be addressed in future work. Section 9 compares our approach with relevant related
work, and finally Section 10 concludes.

2. BACKGROUND
This section provides some background on multi-tenancy, Desktop as a Service delivery
models, and feature models.

2.1. Multi-tenancy
Multi-tenancy is defined as multiple customers, organizations or processes (tenants)
sharing common physical or virtual computing resources while remaining logically in-
dependent [Natis 2012]. Typically, a tenant groups a number of users, which are the
stakeholders in the organization [Bezemer et al. 2010]. Shared resources can vary de-
pending on the cloud service model; each model provides resources belonging to differ-
ent levels of abstraction. The Infrastructure as a Service (IaaS) model offers computer
- physical or virtual machines - and other resources, such as raw block storage, file
or object storage, virtual local area networks (VLANs), IP addresses, and firewalls.
To deploy their applications, users install operating system images and their applica-
tion software on the cloud infrastructure. In the Platform as a Service (PaaS) model,
providers deliver a computing platform, typically including operating system and a so-
lution stack with database management systems (DBMS) and/or application servers.
Cloud users can run their software solutions without managing the underlying hard-
ware and software layers. In the Software as a Service (SaaS) model, users can access
applications and data. The more resources are managed by cloud providers, the more
resources are shared by multiple different users.

A Desktop as a Service (DaaS) is a specific case of SaaS providing a virtual desktop
and a set of applications as a service to a single or multiple tenants. Providers like Cit-
rix1, VMWare2, and Amazon3 are increasingly offering a wide range of DaaS solutions.
In this paper we focus on the case of multi-tenant DaaS relying on the delivery models
provided by Citrix [Citrix 2013].

2.2. Desktop as a Service Delivery Models
DaaS delivery models differ depending on the specific provider. In particular, as shown
in Figure 1a, Citrix provides two main delivery models for DaaS: Hosted Shared and
Virtual Desktop Infrastructure (VDI).

The hosted shared model consists of multiple user desktops shared among different
tenants and hosted on a single server-based operating system. Although it provides
a low-cost, high-density solution, applications must be compatible with a multi-user
server based operating system. In addition, because multiple users are sharing a single
operating system, they are prevented from performing actions that may negatively
affect other users, such as installing new applications or changing system settings.

1http://www.citrix.com/solutions/desktop-as-a-service/
2http://www.vmware.com/products/desktop-virtualization
3http://aws.amazon.com/workspaces/

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:4 J.Garcı́a-Galán et al.

(a)

VDI Model

OS Image

Desktop A

Desktop B

Desktop C

Tenant A

Tenant B

Tenant C

Desktop

Tenant C

Tenant B

Tenant A

Hosted Shared Model

(b)

DaaS$

vDisk$
Delivery$
Model$

VDI$
Hosted$
Shared$

Pooled$
Assigned$

1..1$

1..1$

costMonth:$$$

Rela?onships$

Mandatory$

Op?onal$

Depends$

Excludes$

Cardinality$
n..m$

Fig. 1. a) DaaS delivery models b) Example of a FM.

The VDI model hosts custom desktop instances on remote servers. Each desktop
instance is associated with a different tenant and relies on a centralised master im-
age. VDI supports more customisation than the hosted shared model since each tenant
uses a different desktop instance. However, the specific shared and exclusive aspects
depend on the concrete VDI implementation and its options. For example, Citrix sup-
ports pooled VDI and assigned VDI (with personal vDisk) [Citrix 2013]. A pooled VDI
provides a clean random virtual desktop each time a user accesses the service. An
assigned VDI allows the users to customise the desktop, save applied changes after
logging out, and connect to the same virtual machine at each login.

The choice of a delivery model depends on the number of users, their profile (i.e.
intensity of desktop usage) and diversity, the applications adopted more often, and
the available infrastructural resources. In the case of a hosted shared model, all the
features are shared among all the tenants, while in the case of a VDI model, the shared
aspects depend on the concrete VDI configuration. Table I shows the impact of different
user profiles on the required infrastructural resources (CPU and RAM) for different
DaaS delivery models. CPU requirements determine the maximum number of users of
a specific type that can be allocated for each core. While RAM requirements indicate
the amount of RAM (in MB or GB) necessary to serve the requests of each user. In the
next section we present a DaaS case study for the aforementioned delivery models.

Table I. Impact of the user profiles on the required infrastructural resources for different DaaS delivery mod-
els [Citrix 2013]. We assume to use Windows Server 2012 and Windows 8 for VDI and hosted shared models,
respectively, and a processor speed of 2.7 GHz and Intel Westmere processor architecture.

CPU: users per core (MIPS per user) RAM per user
Profile Apps Pooled VDI Assigned VDI Shared VDI Shared

Light 1-2 office apps 15 (1340) 13 (1546) 21 (957) 1 GB 340 MB
Normal 2-10 office apps. light

multimedia use
11 (1827) 10 (2010) 14 (1435) 2 GB 500 MB

Heavy Multimedia or app de-
velopment

6 (3350) 5 (4020) 7 (2871) 4 GB 1 GB

2.3. Feature Models
Feature Models (FMs) [Kang et al. 1990] are used to represent all the possible prod-
ucts that can be built in variability-intensive systems such as Software Product Lines
(SPLs). FMs are tree-like data structures where each node represents a product fea-
ture. Features are bound by means of hierarchical (mandatory, optional, and set) and
cross-tree relationships. These relationships define how features can be combined in a

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

User-centric Adaptation Analysis of Multi-tenancy 39:5

product, defining the configuration space of the system. Figure 1b shows an example
of a FM diagram that represents the variability of DaaS delivery models. DaaS is the
root feature that represents the overall functionality of the system. It has two children,
an optional feature (white circle) named vDisk, and a mandatory feature (black circle)
named Delivery Model. The latter feature is decomposed by a set relationship whose
cardinality indicates the number of child features that can be chosen at the same time.
Note that in a FM, non-leaf features [Thum et al. 2011] can be used to represent high-
level decisions and group lower-level decisions. For example, the VDI feature is used to
group two possible VDI implementations (Pooled and Assigned).

FMs also represent cross-tree constraints, attributes and complex constraints.
Cross-tree constraints are constraints between features belonging to different
branches of the model, such as the dependency between features vDisk and Assigned,
indicating that the adoption of a personal vDisk requires the selection of an assigned
VDI implementation. Attributes are additional properties associated with a feature.
For example, the totalCost attribute of the DaaS feature is a real number describing
the cost of a specific DaaS configuration. Finally, complex constraints describe arith-
metic, logical, and relational constraints on features and attributes. They can be used,
for example, to bound the possible values that attributes can assume.

3. CASE STUDY
In this section, we present a Windows-based DaaS case study that we use to motivate
and illustrate our work. First, we describe the configuration space of the DaaS that
can be delivered by using a hosted shared or a VDI model. Second, we illustrate how
different user profiles and DaaS configuration options impact on the infrastructure
(CPU and RAM). Finally, we show a multi-tenant scenario, where each tenant groups
users having compatible DaaS configuration preferences.

3.1. DaaS Configuration Space
We present a Windows-based DaaS example where each instance uses different deliv-
ery models: hosted shared (HS), pooled (PVDI) and assigned VDI (AVDI). We assume
that every DaaS instance provides several applications: (1) a LaTex compiler and edi-
tor, (2) MS-Office, (3) a PDF reader, (4) GIMP as image editor, (5) Eclipse as IDE, and
(6) SPSS for statistical analysis. An instance setup is defined by four configuration
options: regional settings, gadgets (desktop widgets), maintenance tasks, and updates
frequency. Tenants can indicate their preferred configuration options, and the satis-
faction of such preferences depends on the delivery model. Table II indicates the con-
figuration options that are shared in the different delivery models. If a configuration
option is shared by multiple tenants, conflicts among different preferences may arise.
For example, in a hosted shared model, different tenants may have different update
frequency preferences for Eclipse and MS-Office; while in an assigned VDI model such
option can be customised for each tenant, avoiding any possible conflict.

3.2. Infrastructural Constraints
In this section we characterise the workload generated by the service users and its
configuration in order to assess whether the infrastructural resources available at the
service provider are satisfactory to provision a DaaS instance, while avoiding service
outages. The workload generated by the activity of each user depends on the applica-
tions s/he executes more often. We profile users along the three categories identified
by [Citrix 2013]: light, normal and heavy. The delivery model has an impact on the
number of users per core a DaaS is able to handle and on the required RAM size. Ta-
ble I shows an estimation of the workload generated by each user profile depending
on the DaaS delivery model and expressed in terms of Million Instructions Per Second

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:6 J.Garcı́a-Galán et al.

(MIPS) and memory size 4. Beside the workload generated by the users, the current
service configuration also has an impact on the workload. Although this impact is not
publicly described by providers, it can be easily profiled in a system. For the possible
DaaS configuration options envisaged in our example scenario, we assume to have the
peak workloads shown in the last two columns of Table II. Note that a peak workload
represents the maximum workload that can be reached at a given time instant.

3.3. Users, Preferences and Conflicts
In our example scenario we assume to have three different tenants sharing the same
DaaS instance. Each tenant groups a given number of similar users whose preferences,
used applications and profiles are presented in Table III. Preferences expressed on the
same configuration options may lead to conflicts. For example, tenants 1 and 2 have
different – but equivalent – preferences for the regional settings that do not create con-
flicts. Tenants 2 and 3 have contradicting preferences for the indexing feature, making
it impossible to satisfy both preferences at the same time. Tenant 1 prefers weekly OS
updates, while tenant 3 favours monthly office updates causing a potential conflict. In-
deed, the satisfaction of both preferences may cause a violation of the constraint that
requires that office updates period must be smaller than the OS update period (Ta-
ble II). Note that the complete satisfaction of all the preferences is infeasible in most
of the cases, and therefore it is necessary to trade-off conflicting preferences.

Similarly to other cloud service models, a multi-tenant DaaS satisfies the requests
of its tenants elastically. This means that the tenants may join and leave the service
or change their preferences or number of users at runtime. For example, the users in
tenant 3 work at fixed times, and therefore they join and leave the DaaS almost at
the same time in the workdays. While the users of the rest of the tenants access the
desktop at different times (including weekends), especially when project deadlines are
close. Similarly, the current service configuration may become sub-optimal because
tenant preferences vary during the system life-time. For example, users of tenant 3
may prefer to deactivate Eclipse updates while finishing a development sprint. In all
these cases, the current users and their preferences have a direct influence on the
selection of a specific service configuration. Furthermore, modifications of the available
service configurations might lead to changes in the tenant preferences. For example,
if some of the backup features are removed, the users might change their preferences
w.r.t. the new configuration space.

4While the RAM and users per core calculations are provided by Citrix, the MIPS are estimated based on the
MIPS of an Intel Westmere Core i7 980X (hex-core) 3.3 Ghz processor. We have to adjust the clock frequency
to the Westmere 2.7 Ghz of Table I. The MIPS for a single core are 147,600∗2.7

6∗3.3 ≈ 20100.

Table II. Shared DaaS configuration options depending on the delivery model and their workload peaks.

Shared options Workload Peaks
HS PVDI AVDI DaaS configuration options Values MIPS RAM
! % % Regional Settings { UK, US, ES } - -

! % % Gadgets Weather {On, Off} - -
Calendar - -

! ! % Maintenance
Defragmenter {On, Off} 10 000 3 GB
Indexing 15 000 4 GB
Backup {Daily, Weekly, Monthly} 7 000 1 GB

! !

%

Updates

Java

{Daily, Weekly, Monthly}
3 000 0.2 GB

% Eclipse 2 000 0.1 GB
% MS-Office * 3 000 0.4 GB
! OS * 5 000 1 GB

* MS-Office updates period should be smaller than that used for OS updates.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

User-centric Adaptation Analysis of Multi-tenancy 39:7

Table III. Tenants’ usage profile and preferences. Potential conflicting preferences are associated with the
same number.

Users Apps Profile Preferences

Tenant 1 45 Medium

- US reg. settings (1)
- MS-Office - Office updates (3)
- GIMP - Weekly backups

- Weekly OS Updates (3)

Tenant 2 60
- Latex

Light
- No UK regional settings (1)

- MS-Office - Indexing (2)
- Defragmentation

Tenant 3 31
- Eclipse

Heavy
- Monthly office updates (3)

- MS-Office - No Indexing (2)
- PDF Reader - Calendar Gadget

4. TOWARDS USER-CENTRIC ADAPTATION OF MULTI-TENANT SERVICES
In this section, we present the foundations of our user-centric adaptation approach
for multi-tenant services. In particular we provide a big picture of the user-centric
adaptation problem and focus on the analysis for supporting service reconfiguration.

4.1. User-Centric Adaptation Problem
We consider the user-centric adaptation as the process that reconfigures a system
when the users or the operational environment change, in order to maximise user
satisfaction. The adaptation actions perform a system reconfiguration by changing the
values of the configuration options. We propose to perform the adaptation when any
event that may have an impact on the users satisfaction is detected, such as changes in
the user preferences, in the available system configurations or in the computational re-
sources. However, system adaptations can in turn reduce the system usability. There-
fore it is necessary to balance the trade-off between the preferences satisfaction and
the obtrusiveness of the adaptation actions.

Maximise
users' preferences

Reconfiguration

Adaptation Strategy

How to apply
the candidate

reconfiguration

Apply reconfiguration
in the running system

Infrastructure

Adaptation
Frequency

Configurations

Users

Satisfy Infrastructure
Constraints
Minimise
adaptation cost

Current
Configuration

M

A

P

E

Fig. 2. User-Centric Adaptation MAPE (Monitoring, Analysis, Planning, Execution) Loop.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:8 J.Garcı́a-Galán et al.

As shown in Figure 2, the activities of the MAPE loop can support user-centric adap-
tation as follows:

(a) Monitoring (M) has the objective to capture user related changes, modifications of
the available system configurations, and variations of computational resources. Any
of these changes can trigger a new adaptation. User related changes include modifi-
cations of the users preferences on the available system configurations or variations
of the number of users per tenant, which in turn can affect the global preferences
of a tenant. Monitoring users preferences can be performed, for example, by asking
for explicit users feedback [Ali et al. 2012]. Modifications of the configuration space
may be due to, for example, new applications supported by the DaaS or system up-
dates. Infrastructure changes are related to modifications of allocated resources or
changes of the constraints on the maximum resources that can be allocated. Note
that all these changes can have an impact on how the users preferences are satis-
fied. Additionally, the monitoring also has to keep track of the adaptation frequency,
which may affect the performance of tasks performed by the users [Speier et al.
2003] and, therefore, preclude the execution of a reconfiguration.

(b) Analysis (A) has the objective to identify the best system configuration(s), which
optimises a set of metrics. In particular, a reconfiguration should maximise the sat-
isfaction of the user preferences by taking into account the available infrastructural
resources. As changes from one configuration to another can have a negative impact
on the usability of the system [Gajos et al. 2006], the reconfiguration should also
minimise the adaptation cost a.k.a “obtrusiveness”. For example, a reconfiguration
that modifies the look and feel or the regional settings in a DaaS is more obtrusive
than another one that modifies the backup frequency. Frequent adaptations can
also increase the obtrusiveness. This issue is further discussed and parametrised in
sections 5.1 and 6.3, respectively.

(c) Planning (P) receives as input a candidate reconfiguration identified during analy-
sis and identifies an adaptation strategy indicating how this reconfiguration should
be applied at runtime. For example, changes in the application look and feel might
not be applied until specific users terminate the interaction with the system. A re-
configuration that modifies the backup frequency can only be applied after the next
scheduled backup.

(d) Execution (E) has the objective to apply an adaptation at runtime. For example,
in the case of a VDI DaaS, a variant of existing application instances should be
deployed dynamically, as proposed in [Baresi et al. 2012; Schroeter et al. 2012b].
While, for a hosted shared DaaS model the single application instance should be
modified when possible.

For our DaaS case study, depending on the chosen delivery model, the value of a con-
figuration option can be tenant-specific, i.e. enabling a different configuration for each
tenant, or tenant-shared, i.e. common to all the tenants. However, as a multi-tenant
service, all the delivery models present a – higher or lower – number of shared config-
uration options. We propose to adapt the shared configuration options dynamically. In
this way, our approach can be applied to different delivery models by changing the op-
tions that are included in the configuration space considered during the analysis. Note
that admin aspects that are common to all the tenants, such as security configurations
(e.g., firewall, antivirus), are out of the scope of our adaptation problem. Indeed, given
their criticality, their configuration can only be performed by the admin staff at the
provider organisation.

Our user-centric adaptation approach can be applied to other multi-tenant service
models, such as SaaS, PaaS, and IaaS. An example of multi-tenant SaaS is Word-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

User-centric Adaptation Analysis of Multi-tenancy 39:9

press5, which is an open source blogging tool and a content management system pro-
viding different customisation options and plugins. Similarly to a DaaS, Wordpress
supports multisites6, which aggregate several Wordpress sites into a single installa-
tion. In this case, the shared resources among tenants are the global configuration
options, such as the default language, the upgrading policy, and the available plugins,
themes, and blog entries. In a PaaS model the deployment environment (e.g., DBMSs,
web servers) can be reconfigured to adequately host multiple applications – represent-
ing the tenants in this case – having different needs. Virtualised computing instances
and storage services are examples of multi-tenant IaaS. Such services rely on the un-
derlying hardware resources that are shared among different tenants. For example,
Amazon offers micro instances to increase CPU capacity for a short time in order to
handle load peaks. Since micro instances do not have fixed performance requirements,
in this scenario our approach can be used to decide which micro instance receives addi-
tional computational cycles. This choice depends on the current and changing needs of
the tenants and on the available computational capacity of the physical CPU instance
shared among the tenants.

4.2. Adaptation Analysis for Service Reconfiguration
In this paper we focus on the analysis activity of the MAPE loop. In particular, we
define the analysis problem as a tuple of the form

(C, I, T, fC , fT , (u1, . . . , un), ρ),

such that C represents the set of configurations that are available in the service; I
characterises the infrastructural resources; T represents the set of tenants, fC : C → I
and fT : T → I are the functions that identify the impact (workload) that each con-
figuration and each tenant has on the required infrastructural resources, respectively;
ui : C → R are utility functions for each tenant in T defining the tenant satisfaction
for any given configuration in C; and ρ : C × C → R is a function that quantifies the
obtrusiveness that a change from one configuration to another produces.

Assuming that it is possible to define a function U : C → R that computes the global
satisfaction of all the tenants for a given configuration, a candidate reconfiguration
ct+1 ∈ C can only be enforced if it outperforms the current one (ct), i.e. U(ct+1) ≥ U(ct)+
ρ. Note that we assume that a tenant groups different users who share compatible
preferences and the same profile. The clustering of the user preferences into different
tenants is performed during the monitoring phase and is an open issue that will be
addressed in future work.

5. MODELLING
In this section we describe how the multi-tenant service (Section 5.1) and the user
preferences (Section 5.2) are modelled to support the analysis. We use FMs to repre-
sent the multi-tenant service including the configuration space (C), the infrastructural
resources (I), the workload generated by a service configuration and the users (fC , fT),
and the obtrusiveness of a service reconfiguration (ρ). We adopt the SOUP preference
model [Garcı́a et al. 2013] to represent the user preferences.

5.1. Service Modelling
Service modelling usually involves multiple and interrelated configuration options. For
example, Amazon EC2 features present more than 20,000 constraints defining 16,991
different configurations [Garcı́a-Galán et al. 2013]. Our choice to use FMs to model

5https://wordpress.org/
6http://codex.wordpress.org/Create%20A%20Network

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:10 J.Garcı́a-Galán et al.

(a)

Service

Modelling

Configuration space

Infrastructure

Workload

Obtrusiveness

Feature Model

(b)

Analysis

✓!
✗!

…"

✓!
3.0!
LOW!

Configuration space

Infrastructure

Workload

Obtrusiveness

Preferences

Reconfiguration

Fig. 3. a) Service modelling. b) Analysis inputs and outputs.

multi-tenant services is motivated by the fact that FMs are expressive enough to rep-
resent increasingly complex systems such as cloud services [Garcı́a-Galán et al. 2013],
and content-management frameworks [Sánchez et al. 2014]. This section leverages our
DaaS case study to describe how we use FMs to model multi-tenant services.

5.1.1. Configuration Space. Figure 4 shows a FM for the DaaS case study. Each config-
uration option is modelled either as a feature or as an attribute. Features represent
boolean options that can be selected or removed. Attributes can assume values in an
integer, real or enumerated domain, being suitable to represent non-boolean options.
In our case study, the main configuration options are represented by five features:
Gadgets, Regional Settings, AppUpdates, Maintenance and OSUpdates. These features
are in turn decomposed by sub-features representing possible configuration options.
For example, if the Gadgets feature is selected, it is necessary to specify whether the
Weather forecast gadget, the Calendar gadget or both of them are selected. Since the
Maintenance feature must be selected mandatorily due to its relationship with the
root feature, the Backup feature must also be selected, while features Indexing and
Defragmenter are optional. For the Backup feature, a daily, weekly, or monthly backup
period must be chosen as indicated by the period attribute.

5.1.2. Infrastructure and Workload. In real-world contexts, services have limited infras-
tructural resources which should be satisfactory to handle the workload determined
by the current service configuration and users. We propose to incorporate infrastruc-
ture and workload information into the FM by means of attributes and complex con-
straints. In our example, infrastructure and workload are defined in terms of CPU
speed (in MIPS) and RAM size, although other indicators such as incoming and out-
going bandwidth or storage could also be considered. Listing 1 shows an excerpt of
the infrastructure and workload definition in the FM using the FaMa plain text no-
tation [Trinidad et al. 2008]. In particular, the syntax for an attribute definition is
Feature.attributeName : Domain[range], zero-value;. This indicates the value an
attribute assumes when the corresponding feature is removed.

Available infrastructural resources are defined by attributes cores, availableCPU
and availableMemory associated with the WindowsDaas feature. They represent the
number of CPU cores, and the available CPU and memory, and are assigned a fixed
value that could only be modified if the infrastructure changes. The attributes rep-
resenting the overall workload are CPUWorkload and memoryWorkload and are also as-
sociated with the WindowsDaas feature. The value of these attributes must always be
smaller than the CPU and the RAM available; this is represented in terms of con-
straints in the FM (first two constraints in Listing 1). The value of these attributes

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

User-centric Adaptation Analysis of Multi-tenancy 39:11

WindowsDaaS+

Maintenance+

Indexing+

Defragmenter+

Backup+

OSUpdate+AppUpdates+

JavaUpdate+

EclipseUpdate+

OfficeUpdate+

1..3+

period:+
{daily,weekly,

monthly}+

Regional+

SeLngs+

UK+

US+

ES+

1..1+

Hosted*shared*common*aspects*

Pooled*VDI*common*aspects*

Assigned*VDI*common*aspects*

Gadgets+

Weather+

Calendar+

1..2+

cores:+int*
availableCPU:*MIPS+

availableMemory:*GB++
CPUWorkload:*MIPS+

memoryWorkload:*GB**
configCPUWL:*MIPS*
configMemoryWL:*GB**
userCPUWL:*MIPS*
userMemoryWL:*GB**

configMemoryWL:*GB+
configCPUWL:*MIPS+

OfficeUpdate.period ≤OSUpdate.period

Fig. 4. DaaS configuration space expressed as a Feature Diagram – a FM graphical notation.

may also vary at runtime depending on the current service configuration and on the
number of users.

The overall CPU and RAM workload determined by a service configuration is ex-
pressed the by the WindowsDaas feature attributes configCPUWL and configMemoryWL,
respectively. The value of such attributes is computed as the sum of the CPU and RAM
workload determined by each selected leaf feature. This operation is expressed by two
constraints in the feature diagram (last two constraints in Listing 1). Each leaf feature
is associated with attributes feature.configCPUWL and feature.configMemoryWL rep-
resenting its CPU and RAM workload respectively. For example, as shown in Listing 1,
the Weather and Indexing features require 30MB and 0.5GB of RAM, respectively,
when they are selected. When a feature is removed from a configuration, it does not
require resources and zero-values in the attribute definitions are used for this purpose.
The workload values associated with each leaf feature can be obtained from real-time
data collected while the feature is selected, or from estimations, when the feature is
currently removed.

The CPU and RAM workload determined by the users is represented by the
WindowsDaas feature attributes userMemoryWL and userCPUWL, respectively. This work-
load is usually variable and non-linear, and depends on the user number and profile.
Ideally, during the monitoring phase upper bounds for userMemoryWL and userCPUWL
can be predicted. However, since the scope of the solution of this paper is on the anal-
ysis phase, we use simulated workloads for the example described in Section 6.2.
Listing 1. Excerpt of DaaS infrastructure, workload and obtrusiveness modelling for memory using FaMa plain
text format

%Attributes
Available infrastructure and workload attr ibutes
WindowsDaaS . availableMemory : Real [2 5 6] ; ## in GBs
WindowsDaaS . availableCPU : Real [400000.0] ; ## in MIPS
WindowsDaaS . memoryWorkload : Real [0 to 512] ;
WindowsDaaS . CPUWorkload : Real [0 to 1000000.0] ;

Attributes to compute the current memory workload

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:12 J.Garcı́a-Galán et al.

WindowsDaaS .userMemoryWL: Real [0 to 256] ;
WindowsDaaS . configMemoryWL Real [0 to 256] ;
Weather . configMemoryWL : Real [0 . 0 3] , 0 ;
Indexing . configMemoryWL : Real [0 . 5] , 0 ;
. . .
Attributes to compute the obtrusiveness
Gadgets . obtrusiveness : [3] ; ## high obtrusiveness value
Indexing . obtrusiveness : [2] ; ## medium obtrusiveness
JavaUpdt . obtrusiveness : [1] ; ## low obtrusiveness
. . .

%Constraints
WindowsDaaS . CPUWorkload < WindowsDaaS . availableCPU ;
WindowsDaaS . memoryWorkload < WindowsDaaS . availableMemory ;
WindowsDaaS . memoryWorkload == WindowsDaaS . configMemoryWL + WindowsDaaS .userMemoryWL ;
WindowsDaaS . configMemoryWL == Weather . configMemoryWL + Calendar . configMemoryWL +
Defragmenter . configMemoryWL + Indexing . configMemoryWL + Backup . configMemoryWL + . . . ;
. . .

5.1.3. Obtrusiveness. To model the obtrusiveness of a service configuration we leverage
the conceptual framework proposed by Ju and Leifer [Ju and Leifer 2008]. This frame-
work determines the obtrusiveness level of each interaction of the system with the
user by considering the attention dimension, i.e. whether an interaction takes place
in the background (the user is unaware of the interaction with the system) or in the
foreground (the user is fully conscious of the interaction). Taking inspiration from this
work, we consider user awareness about changes as a factor that affects the obtru-
siveness level of a reconfiguration. In our case, a change is performed when a selected
feature is removed, a removed feature is selected, or a configuration option attribute
– such as update period – changes value. In this context, the obtrusiveness level pro-
duced by changes is the sum of the obtrusiveness level produced by each modified
feature. For this reason, we associate an obtrusiveness attribute with each feature
in the FM. The higher the user awareness about a change in a feature, the higher
the obtrusiveness of the feature. In particular, the features whose changes affect the
graphical user interface, such as Gadgets and Regional Settings have high obtrusive-
ness (3). Features that might cause a slight degradation in the system performance,
such as Maintenance, have medium obtrusiveness (2). For example, Indexing is a back-
ground task that consumes some CPU and has medium obtrusiveness. Finally features
that are almost transparent to the users such as AppUpdates and OSUpdates have low
obtrusiveness (1). Listing 1 shows an example of the obtrusiveness definition for the
Gadgets and Indexing features. In Section 6.3 we explain how these values are used to
include obtrusiveness information in the adaptation analysis.

5.2. User Preferences Modelling
In FMs, users can describe their preferences in terms of hard requirements, where
a feature must be either selected or removed and attributes must only assume one
specific value in their domains. This approach hinders the negotiation process among
different users, making it harder to find a relaxation of conflicting requirements.

Although a service cannot satisfy conflicting hard requirements, it can provide a bal-
ance between conflicting preferences. We adapt five preference terms of the Semantic
Ontology of User Preferences (SOUP) model [Garcı́a et al. 2013] to express fuzzy user
preferences on a given service. SOUP is a highly intuitive and expressive preference
model, which was initially designed to express preferences for service discovery and
ranking. However, it has been adapted to different scenarios, such as resources alloca-
tion in business processes [Cabanillas et al. 2013]. We detail the adapted preferences
as follows:

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

User-centric Adaptation Analysis of Multi-tenancy 39:13

— Favorites expresses a preference on a selected feature. For example, a user may
prefer the Indexing feature to be selected.

— Dislikes expresses a preference on a removed feature. For example, a user may dis-
like the JavaUpdate feature.

— Highest expresses a preference on maximising the value of a given attribute. For
example, a user may prefer the highest value for the OSUpdate.period attribute.

— Lowest expresses a preference on minimising the value of a given attribute. For
example, a user may want the lowest value for the JavaUpdate.period attribute.

— Around expresses a preference on a specific attribute value. The closer the attribute
value to a target value, the higher the preference satisfaction. For example, a user
may want the OfficeUpdate.period attribute to be close to “weekly” value.

In this way, the different users – grouped by tenants – can employ fuzzy operators to
define their satisfaction. Initially, described preference terms were intended to define a
partial ranking between a set of services [Garcı́a et al. 2013]. In our work we compute
the satisfaction of each tenant (i) for each configuration option (j) as a real number
pij ∈ [0, 1]. This choice allows us to measure the preference satisfaction of each tenant
i in terms of a fitness function (ui) described in the next section.

6. ANALYSIS
The goal of our analysis is to identify a service reconfiguration that improves the sat-
isfaction of the users preferences compared to the current configuration. The anal-
ysis takes as input the service model, including the configuration space, the infras-
tructure and workload, and the features obtrusiveness, the users preferences model,
and the current service configuration, as shown in Figure 3b. The analysis problem
is interpreted as an operation of the Automated Analysis of Feature Models (AAFM),
as described in Section 6.1. A candidate configuration is computed by taking into ac-
count the preferences satisfaction and the obtrusiveness determined by its application
at runtime. These aspects are considered in the preference-based optimisation (Sec-
tion 6.2) and the obtrusiveness-aware optimisation (Section 6.3), respectively.

6.1. Automated Analysis of Feature Models
AAFM is a discipline that deals with “the automated extraction of information from
FMs using automated mechanisms” [Benavides et al. 2010]. We leverage existing map-
pings from FMs to logic paradigms and off-the-shelf solvers to to implement our adap-
tation analysis. In particular, in this paper we use the optimisation operation provided
by the AAFM framework to perform our adaptation analysis. This operation takes a
FM and an objective function as input, and returns the configuration fulfilling the
criteria established by the function. To optimise the value of the attributes defined
in the FMs, relative order preferences have been considered in previous work [Asadi
et al. 2014]. However, as far as we are aware, no approach has considered how to op-
timise fuzzy, high-level user preferences expressed in a similarly to those described
in Section 5.2. Therefore, we have tailored the objective function of the optimisation
operation of the AAFM framework to support our preference-based optimisation.

6.2. Preference-based Optimisation
We interpret our preference-based optimisation as a multi-objective constrained opti-
misation problem. From all the available combinations of configuration values, only
a subset satisfies all the configuration space, infrastructure and obtrusiveness con-
straints for a given time lapse. The set of preferences associated with each tenant is
considered as a different objective function; from that subset it is possible to obtain a
Pareto front with solutions that are equally efficient. Table IV shows how preference
satisfaction is computed for the analysis. Each preference defines a satisfaction degree

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:14 J.Garcı́a-Galán et al.

pij comprised between 0 and 1, depending on the value of the element referred by the
preference. The fitness function of each tenant, ui =

∑
j pij , aggregates its preferences.

Since the Pareto front may be composed of a number of equally efficient solutions, we
rank them by using a utility function that allows us to choose a single one. To iden-
tify an egalitarian solution we take inspiration from cooperative game theory and the
concept of an impartial arbitrator: from two optimal solutions, an impartial arbitrator
chooses the most equitable one [Myerson 1991]. Our utility function corresponds to a
variation of the Nash product (

∏
i ui), the so-named Normalised Nash Product, which

compares the different solutions belonging to the Pareto front, as follows:

NNP =
∏ ui · wi

UiMAX

where wi is the number of users of tenant i, and UiMAX is the maximum possible
preference satisfaction of each tenant ui. If different configurations have the same
value of the utility function, we select the one minimising the resources usage. The
rest of the section illustrates our analysis approach through the scenario presented in
Section 3.

Table IV. Preferences satisfaction.

Preference Element Satisfaction Measure Example

Favorites(f) Feature f = selected =⇒ pij = 1 Favorites(Indexing)
Dislikes(f) Feature f = removed =⇒ pij = 1 Dislikes(JavaUpdate)

Highest(att) Attribute pij = value−lowerBound
upperBound−lowerBound

Highest(OSUpdate.period)

Lowest(att) Attribute pij = upperBound−value
upperBound−lowerBound

Lowest(JavaUpdate.period)

Around(att,d) Attribute pij = inverseDistance(value, d) Around(OfficeUpdate, Weekly)

We consider a hosted shared delivery model, where all the resources are shared
among the tenants, as shown in Figure 4. We also consider the preferences of each
tenant, their number of users for two subsequent time instants (t and t + 1) as shown
in Table V. At time t there are three tenants and the DaaS is running configuration c1,
described in Table VI, which provides the satisfaction ui for each tenant i (Table V).

In the next time instant, a new tenant is added, and the preferences and the number
of users associated with each tenant also change. Consequently, the utility value of the
current configuration (ui(c1)) changes accordingly, becoming sub-optimal. Therefore,
the analysis is triggered, returning a new configuration, c2 (Table VI), which delivers
improved utility values ui(c2). The most remarkable improvements are for tenant2 and
tenant4, whose preference satisfaction increases from 2.66 to 3.66 and from 0.5 to 1.5,
respectively. The improvement of the global satisfaction is also indicated by the value
of our utility function (NNP) increasing from 2.2 to 9.1.

As described previously, the available infrastructural resources must be satisfac-
tory to handle the workload generated by the users at each tenant and by the can-
didate reconfiguration. The workload determined by the users is not linear and peak
MIPS and RAM workloads should be estimated based on the monitored data. For our
DaaS scenario, we generate artificial user workload by means of a Gaussian distri-
bution, similarly to [Maurer et al. 2013]. For each tenant, we generate a number
from a Gaussian distribution, taking µCPU = wi ∗ AvgCPUWorkload and µRAM =
wi ∗ AvgRAMWorkload – where the average workloads for the CPU and the RAM
are extracted from Table I, given the profile and delivery model – and σCPU = µCPU

4 ,
σRAM = µRAM

4 . The workload generated by the candidate reconfiguration is calculated
as the sum of the peak workloads (Table II) of each selected configuration options indi-
cated in the last row of Table VI. The total estimated workload is shown in Table VII,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

User-centric Adaptation Analysis of Multi-tenancy 39:15

Table V. Preferences reconfiguration scenario* for a hosted shared delivery model (changes in bold).
t t+1

Preferences wi ui(c1) Preferences wi ui(c1) ui(c2)

t1

√
US

45 4

√
US

49 4 4
√

OfficeUpdt
√

OfficeUpdt
Backup.period ≈Weekly Backup.period ≈Weekly
OSUpdt.period ≈Weekly OSUpdt.period ≈Weekly

t2

¬ UK

60 2

¬ UK

53 2.66 3.66
√

Indexing
√

Indexing√
Defragmenter

√
Defragmenter

OfficeUpdt ≈Monthly

t3

⇑ OfficeUpdt.period
31 2.5

⇑ OfficeUpdt.period
40 2.5 2.5¬ Indexing

√
Defragmenter√

Calendar
√

Calendar

t4 0 -

√
UK

23 0.5 1.5JavaUpdt.period ≈Monthly
⇓ OfficeUpdt.period

NNP (105) 2.2 9.1
*Legend. ti : Tenanti,

√
: Favorites, ¬ : Dislikes, ⇑ : Highest, ⇓ : Lowest, ≈ : Around

Table VI. Enabled features and attribute values for configurations c1 and c2.
Gadgets Reg. Set. App. Updates Maintenance OS Update

c1 Calendar US OfficeUpdt.period = Weekly Defragmenter,
Backup.period = Weekly

OSUpdate.period = Weekly

c2 Calendar US OfficeUpdt.period = Weekly,
JavaUpdt.period = Monthly

Defragmenter,
Indexing,
Backup.period = Weekly

OSUpdate.period = Weekly

Table VII. Estimation of the workload impact on the infrastructure.
c1 c2

Workload Workload
Tenant Profile wi MIPS RAM (MB) wi MIPS RAM (MB)

T1 Medium 45 114213 17098 49 71647 28352
T2 Light 60 74507 10127 53 33953 24303
T3 Heavy 31 84249 84249 40 154094 37511
T4 Heavy - - - 23 57136 31316

Configuration workload 25000 5520 43000 9816
Total workload 297969 72505 359830 131298

as the sum of the tenants workload and the configuration workload. In this case, we
assume that the required CPU and memory can be provisioned by the available infras-
tructural resources depicted in Listing 1.

6.3. Obtrusiveness-aware Optimisation
We characterise the obtrusiveness level of each service reconfiguration as

ρ(Ct+1, Ct,∆t) =
∑

m∈diff(Ct+1,Ct)

ρm +max{δ0 −∆t, 0}

where Ct+1 ∈ C is the candidate configuration; Ct is the current configuration; diff
is a function that obtains the set of features whose state (selected or removed) or at-
tributes differ between two configurations; ρm is the obtrusiveness level assigned for
a given feature (defined through the obtrusiveness attributes in the FM); ∆t is the
time elapsed since the last reconfiguration; and δ0 is the minimum time interval that
must pass between two subsequent reconfigurations in order not to disrupt the service
usability. δ0 can be estimated from monitored data.

In this scenario, we add the constraint ρ < ρMAX to the analysis problem, in order
to ensure that the obtrusiveness of the reconfigurations from the Pareto front is below
a certain threshold. ρ is also set as an additional objective to compute the Pareto front.

For our example scenario, the diff function between c1 and c2 (Table VI) returns
the set {Indexing, JavaUpdt}. According to the model excerpt of Listing 1, ρm =

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:16 J.Garcı́a-Galán et al.

Indexing.obtrusiveness + JavaUpdt.obtrusiveness = 2 + 1 = 3. Considering δ0 = 24
hours, and ρMAX = 4 hours, at least 20 hours should pass between two subsequent
reconfigurations. If ∆t = 28 hours, ρ = 3 +max{−4, 0} = 3 < ρMAX , and, therefore, the
obtrusiveness of the candidate reconfiguration is below the maximum threshold.

7. EVALUATION
In this section we illustrate the evaluation of our approach. We describe the imple-
mentation of our analysis (Section 7.1) and explain the experiments we conducted to
assess its effectiveness and performance (Section 7.2). Finally, we present and discuss
our results (Section 7.3).

7.1. Implementation
We have implemented a prototype to perform our preference-based optimisation that
uses jMetal, a Java-based metaheuristics framework to solve multi-objective optimi-
sation problems [Durillo and Nebro 2011]. jMetal provides a number of metaheuristic
algorithms to compute a Pareto front of the problem. Among all the algorithms that
jMetal provides, we have chosen two genetic algorithms which are widely used for the
analysis of FMs [Guo et al. 2011; Sayyad et al. 2013]. Genetic algorithms are search
algorithms that work via the process of natural selection. They begin with an initial
population of potential solutions, which then evolves through different generations –
via mutations and crossovers – toward a set of more optimal solutions. In particular,
we employ FastPGA [Eskandari et al. 2007] and NSGAII [Deb et al. 2002]. Although
both algorithms are elitist, NSGAII establishes different non-domination levels when
ranking the – fixed sized – population, while FastPGA merges and ranks the previous
and current generation into a single – and adaptive sized – population. Due to their
complementarity we decided to compare the behaviour of the two algorithms for our
analysis. Since the notation we used to describe the configuration space (FaMa plain
text notation [Trinidad et al. 2008]) only supports integer attributes at the moment,
we model enumerated domains as an integer range. For the genetic algorithms, the
FMs are encoded as an array of boolean variables to represent features selection and
integer variables to represent attributes values.

Metaheuristics are partial-search algorithms and for this reason they may con-
sider solutions which violate some constraints of the FM. To avoid this problem we
set the correctness of the solution as an additional objective, by taking inspiration
from [Sayyad et al. 2013]. We measure the violated constraints of a configuration using
Choco7, a Java CSP solver. The current configuration of the service is taken as input
and seeded among the initial population. For the first execution, we seed a random
valid configuration of the service. The intention is twofold: speed up the generation
of valid solutions and generate some solutions close to the current one. The result-
ing Pareto front is ranked by using our utility function (Section 6). If all the returned
points of the Pareto front have a value of the utility function equal to zero (NNP = 0)
– due to each ui = 0, our analysis chooses the solution that maximises the average
satisfaction of the tenants.

7.2. Experiments
Our goal in this experimentation is checking the effectiveness of our analysis. We com-
pare the results obtained by using FastPGA and NSGAII with those obtained by using
a random search algorithm. We measure analysis effectiveness in terms of performed
reconfigurations and achieved satisfaction. Performed reconfigurations are measured
as the percentage of times the analysis finds a candidate configuration improving the

7http://www.emn.fr/z-info/choco-solver/

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

User-centric Adaptation Analysis of Multi-tenancy 39:17

NNP value compared to the current one. Achieved satisfaction is measured as the
weighted average of the user preferences satisfaction.

For the experiments, we consider a scenario where tenants change, i.e. they join and
leave the system, and their preferences and number of users vary between different
system snapshots, as described in Table V. We define a snapshot as the state of the
tenants and their preferences for a specific time instant (t). For every snapshot, we run
the analysis to reconfigure the service. We compare the satisfaction achieved by each
reconfiguration for the time t to the satisfaction achieved by the previous configuration
at the same time.

Table VIII. Amount of changes between two consecutive
snapshots at t− 1 and t.

Change t-1 t
#Tenants |T | = n |T | ∈ {n− 1, n+ 1}

#Prefs |Pi| = mi |Pi| ∈ {mi − 1,mi,mi + 1}
#Users |Wi| = wi |Wi| ∈ [WMIN ,WMAX]

Table IX. Characteristics of the FMs
used for the experimental study.

Features Atts. CTC
FM1 18 7 1
FM2 20 14 6
FM3 28 18 9
FM4 29 21 9
FM5 30 21 9

For our experiments, we define a set of tenants T , each of them is associated with
a set of preferences Pi and users Wi. The number of tenants |T | is defined in the inte-
ger range [TMIN , TMAX], the number of preferences per tenant i |Pi| is defined in the
integer range [PMIN , PMAX], and the number of users |Wi| is defined in the integer
range [WMIN ,WMAX], considering also that

∑
|Wi| ≤WTOTAL. For each snapshot (see

Table VIII) either one tenant leaves or a new tenant joins the service, but the rest of
the tenants may experience changes in their preferences. In particular, if an existing
tenant is affected by a change, this can indicate that a new preference is added or
an old one is removed. The number of users associated with each tenant (determin-
ing its weight) may vary between WMAX and WMIN values. To simulate the changes
between consecutive snapshots, we implemented a random generator of tenants and
preferences. Given a FM and an integer k ∈ [PMIN , PMAX], this generator creates T
different tenants, each one with a set of different k preferences over features and at-
tributes of the FM. Once a preference has been defined on an element, such element
is excluded for future preferences of the same tenant to avoid contradictions. After the
initial snapshopt is generated, the generator takes as input the set of current tenants,
and returns a new set of tenants by adding/removing new/existing ones as shown in
Table VIII. It also performs changes in the preferences of the tenants Pi and their
number of users wi.

We consider the configuration space of five services, represented as FMs having in-
creasing complexity. The first FM represents our DaaS scenario in its hosted shared
version, and we have employed BeTTy [Segura et al. 2012], a well-known FM gener-
ator, to create the remaining FMs. For our evaluation, we assume that the estimated
workload can be provisioned by the available infrastructural resources. For instance,
the service provider may rely on a third-party infrastructure provider, such as Ama-
zon, which effectively handles elastic provisioning. Table IX shows the characteristics
of the generated FMs, where CTC identifies the number of cross-tree constraints (non-
hierarchical constraints) of each model. For each FM, we simulated 25 different change
scenarios. We randomised the number of snapshots per scenario n in the integer range
[5, 10]. Initial values and ranges for the remaining parameters are as follows: Tmin = 2,
Tmax = 5, Pmin = 2, Pmax = 10, WMIN = 10 and WMAX = 80. Since each differ-
ent tenant implies a new objective, we select the same upper limit (Tmax = 5) chosen
in related papers on multi-objective optimisation for FMs [Sayyad et al. 2013]. We

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:18 J.Garcı́a-Galán et al.

consider WTOTAL = 200, since such value is close to the maximum number of users
supported by a single real hosted shared DaaS8. For the FastPGA and NSGAII algo-
rithms, we rely on the default parameters suggested by jMetal: Evaluations = 25000,
PopulationSize = 100, CrossoverProbability = 0.9, andMutationProbability = 0.05. For
the Random Search algorithm provided by jMetal9 we have increased the default num-
ber of evaluations (25000) to Evaluations = 100000. This algorithm identifies a random
configuration with no guarantee that a valid solution satisfies all the constraints is
found.

7.3. Experimental Results and Discussion
Table X shows the average satisfaction of the tenant preferences obtained for our ex-
periments, how often a reconfiguration (Ct) improves the NNP value of the previous
one (Ct−1), and the average execution time for FastPGA, NSGAII and random search
algorithms. We can see that the average satisfaction achieved by the genetic algo-
rithms ranges between 45% and around 70%. Although such satisfaction might not
seem to be a good result, it is necessary to take into account that the preferences of the
different tenants may conflict most of the times, making infeasible to achieve full sat-
isfaction for such cases. However, genetic algorithms clearly outperform the random
search, especially w.r.t the achieved average satisfaction.

The percentage of improved reconfigurations – NNP(Ct) > NNP(Ct−1) – ranges be-
tween 25% and 65% for FastPGA and between 30% and 62% for NSGAII. Although at
a first glance this may seem a poor result, it is necessary to consider that this number
highly depends on the changes between consecutive system snapshots. The more the
changes, the more the chances to decrease the satisfaction of the previous configura-
tion, and the more the chances to find an improved reconfiguration. Besides, since we
look for egalitarian solutions, our algorithms discard solutions that may have a better
average satisfaction but ignore the preferences of particular tenants, i.e. one of the
tenants has 0 satisfaction, which leads to NNP = 0. Both genetic algorithms perform
better than the random search, which cannot return any improved reconfiguration in
most of the cases and whose execution time is about four time higher. This is because
in a constrained optimisation problem we need to consider the constraints in order to
return valid solutions. While we could add the correctness to the solution as an addi-
tional objective for the genetic algorithms, this was not possible for the random search.
The execution time for the genetic algorithms is between 6 and 19 seconds, suggesting
that the our analysis can be performed at runtime.

Figure 5 indicates the average satisfaction improvement for the successful recon-
figurations, which range between 8% and 12% in absolute terms, i.e. the worst result
returns 0% satisfaction, and the perfect result in a conflict-free scenario returns 100%
satisfaction. In general terms, NSGAII algorithm performs better than FastPGA, es-
pecially with larger models: except for FM1, NSGAII outperforms the rate of improve-
ments obtained by using FastPGA. For the first FM, the random search algorithm
performs worse than the genetic algorithms, but better than its own behaviour for the
rest of the FMs. This is due to the fact that the configuration space of the first model
is smaller than the other FMs and allows the random search to find some acceptable
solutions.

8Using 2xE5-2470 2.3 GHz processors, IBM was able to support 206 users:
http://blogs.citrix.com/2013/10/29/extreme-density-5768-hosted-shared-desktops-in-a-single-blade-chassis/
9http://jmetal.sourceforge.net/javadoc/jmetal/metaheuristics/randomSearch/RandomSearch.html

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

User-centric Adaptation Analysis of Multi-tenancy 39:19

Table X. Results of the preference-based analysis for FastPGA, NSGAII and random search (RS) algorithms.

Avg. satisfaction NNP (Ct) > NNP (Ct−1) Avg. execution time (ms)
FM FastPGA NSGAII RS FastPGA NSGAII RS FastPGA NSGAII RS

FM1 71.49% 72.15% 62.93% 64.86% 61.98% 30.06% 8254 6293 23704
FM2 56.53% 61.56% 28.01% 41.81% 49.7% 0% 13473 11150 43445
FM3 50.74% 49.3% 30.31% 25.71% 30.05% 0% 17684 15767 63238
FM4 55.01% 64.67% 30.28% 44.25% 47.05% 0% 18138 16035 65049
FM5 45.87% 56.39% 30.83% 24.55% 38.59% 0% 18822 16941 67378

0"

0.02"

0.04"

0.06"

0.08"

0.1"

0.12"

0.14"

FM1" FM2" FM3" FM4" FM5"

Sa
#s
fa
c#
on

)im
pr
ov
em

en
t))

FastPGA" NSGAII" Random"search"

Fig. 5. Average satisfaction improvement with respect to the previous configuration.

8. OPEN ISSUES
In this paper we do not address all the challenges necessary to support user-centric
adaptation of multi-tenant services. In this section we describe the open issues by
grouping them depending on the activities of the MAPE loop they belong to.

(a) Monitoring: in this work we assume that the monitoring phase is able to obtain
all the data required for the analysis. However, for a comprehensive approach we
need to propose specific ways to extract user preferences, monitor the workload de-
termined by the service configurations and the users, and measure user satisfac-
tion and reconfiguration obtrusiveness – for instance by means of empirical stud-
ies. Modifications in the configurations determined by system changes or updates
should also be detected and monitored.

(b) Analysis: one of the main limitations of the analysis is the simplicity of our work-
load estimation. In future work it will necessary to use monitored data to predict
resources usage determined by a specific configuration and users profiles; additional
aspects, such as thrashing, should also be incorporated. Moreover, we recognise that
although our assumption of uniformity within tenant groups is simplistic, it was
very useful to develop a first version of our analysis approach. However, in future
work, we will use a more precise and updated model of user behaviour and prefer-
ences within each tenant.

(c) Planning: the reconfiguration actions of the service must be planned systemati-
cally, in order to avoid inconsistent service states and user interruption.

(d) Execution: a reconfiguration engine on the specific service – a DaaS in our case –
remains to be implemented in order to execute planned configuration changes.

Furthermore, other aspects may threaten the validity of our approach:

— Malicious users. A malicious user may intentionally express specific preferences
to achieve a desired service configuration. There are two possible ways in which
this problem can be avoided. An option could be to exclude critical features from the
adaptation process. This is the reason why in our case study we did not allow the
users to express preferences on security features, such as firewall level or antivirus

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:20 J.Garcı́a-Galán et al.

update frequency. Another option is to consider a preference in the analysis only if
at least a certain number of users has expressed it.

— Preferences aggregation function. The NNP function we adopt to aggregate
user preferences tries to balance the user satisfaction, avoiding configurations that
deliver a 0-valued satisfaction to any tenant. However, this may result in an unfair
adaptation when, for example, a tenant with a single user that expresses a partic-
ular preference gets it satisfied, while decreasing the satisfaction of the rest of the
tenants with multiple users. To address this issue we can modify the NNP function
by assigning a weight to a specific preference depending on the number of users
sharing it.

9. RELATED WORK
The idea of performing adaptation to improve user satisfaction is not new. Other ap-
proaches [Malek et al. 2012; Cardellini et al. 2012] have considered conflicting users
preferences and limited infrastructural resources in the construction of adaptive soft-
ware systems. For exampleMalek et al. [2012] propose the redeployment of software
components on hardware nodes, in order to optimise conflicting QoS dimensions for
changing user preferences. Cardellini et al. [2012] present a reference framework for
self-adaptation of service-oriented systems, where the user satisfaction is considered
as an adaptation driver. Both approaches solve an optimisation problem to reconfigure
a system architecture and a service oriented application, respectively. The optimisation
problem is solved by means of different techniques, such as a integer programming
or genetic algorithms. Ali et al. [2012] propose social adaptation, which aims to dy-
namically adapt existing software systems depending on the user collective judgement
expressed on the way the system should behave. This approach treats user feedback
as a primary driver for planning and guiding adaptation. Feedback is related to the
selection of a specific system feature when more than one of them can be enabled. This
work also provides an analysis activity to select a feature configuration that fulfils user
preferences. Differently from these approaches, we propose user-centric adaptation for
the reconfiguration of multi-tenant services in cloud scenarios, where users can come
and go and different service configurations and resources are shared depending on
the cloud service model. Dalpiaz et al. [2012] propose to leverage the preferences of
non-functional requirements expressed by a single user as a key driver for adaptation.
Collected preferences are used to adapt the selection of routine tasks to be performed
in a pervasive infrastructure by a user. Instead, we focus on the maximisation of the
satisfaction of the global user preferences expressed on shared service configurations.
Song et al. [2013] present an approach to develop self-adaptive systems that takes into
account end-users, who express their preferences on the adaptation actions selected by
the system in order to better tune the adaptation results. Differently from this work,
in our approach we consider user preferences as one of the main trigger for adaptation
and not to improve the selection of a candidate configuration.

Lamparter et al. [2007] propose an ontology for representing and matching config-
urable web services. In particular, service configurations and associated preferences
are represented using function policies, which allow characterising service attributes
and the semantics and price of their value. The authors also propose an optimal algo-
rithm for service selection based on linear programming. Differently from this work,
we do not focus on the preferences expressed by a single user. Furthermore, we do
not explicitly represent price, but we assume that service providers can satisfy user
preferences up to a maximum amount of resources that can be allocated. A differ-
ent approach is adopted by Gallacher et al. [2013] who propose an algorithm to learn
contextual user preferences without explicitly asking for feedback in order to drive
personal adaptations. The authors try to overcome problems related to the accuracy of

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

User-centric Adaptation Analysis of Multi-tenancy 39:21

the preferences even when input sources come and go and users change their behavior.
This work focuses on improving the preference satisfaction of a single user, while we
assume that user preferences are given and address the problem of maximising their
global satisfaction.

Cloud services analysis and adaptation has been a prolific research area during the
last years. Caton and Rana [2012] propose an approach for cloud infrastructure provi-
sioning through volunteered resources. It relies on autonomic fault management tech-
niques to adapt resource usage. In this direction, Maurer et al. [2013] also propose
an adaptive resource configuration for cloud infrastructure management. In this case,
they structure adaptation actions into levels, rely on Case-Based Reasoning and a
rule-based approach in order to counteract SLA-violations. Wei et al. [2010] present
a similar idea, with the difference that they intend to reach an equilibrium among
resources allocation performed on behalf of different users. To achieve this aim, Wei
et al. use a game theoretic approach based on Nash equilibria. Pitt et al. [2012] also
propose a resource allocation method which is focused on the notion of fairness for the
agents who share a common pool of resources. The authors take inspiration from the
principles of enduring institutions [E. Ostrom 1990] to identify a resource allocation
method based on canons of distributive justice. In particular, they propose a variant of
the Linear Public Good game as an abstract representation of the resource allocation
scenarios found in ad-hoc networks, sensor networks and smart grids. This approach
demonstrates to produce a better balance of utility and fairness. Differently from us,
the approaches [Caton and Rana 2012; Maurer et al. 2013; Wei et al. 2010; Pitt et al.
2012] presented previously focus on resource allocation instead of feature selection and
maximisation of the global user preferences. Furthermore, although the work by Wei
et al. [Wei et al. 2010] and Pitt et al. [Pitt et al. 2012] is also based on game theory
to achieve fair resource allocation, their analysis has not ben proposed to support run-
time adaptation. Finally, Vankeirsbilck et al. [2014] propose a model for identifying an
optimal resource allocation in order to satisfy virtual desktop requests based on the
trade-off between costs and revenues for the service provider. The authors also con-
sider the possibility of overbooking i.e. probability that less resources for the virtual
desktops than needed are allocated. This approach is agnostic of user preferences and
takes only into account resource allocation as a measure of SLA violations.

Other work is more focused on cloud adaptation at the application level. Inzinger
et al. [2013] propose a model-based adaptation which allows cloud application devel-
opers to specify behavior goals and adaptation rules. These models are “management
hooks” for the cloud providers, who can implement an adaptation strategy by consider-
ing preferences of multiple customers and low level infrastructural constraints. Mar-
quezan et al. [2014] provide a conceptual model that characterises all entities of the
cloud environment that are relevant for adaptation decisions, the concrete adaptation
mechanisms and actions that these entities may perform, and the mutual dependen-
cies between these entities and actions. This allows cloud developers to take informed
decisions on which kind of adaptation mechanisms to exploit for their application. Dif-
ferently from this work, in our approach we model user preferences expressed over the
service configurations, and identify infrastructural resources required to support spe-
cific service delivery models. These models allows us to configure our user preference
analysis automatically.

Nallur and Bahsoon [2013] propose an adaptive mechanism for applications com-
posed of different cloud services. Adaptation dynamically selects the best value-for-
money services and is triggered by violations of QoS by any of the adopted concrete
service and by changes of an application target QoS. The authors propose an approach
based on Market-Based Control (MBC) to self-adaptation: bids are the mechanism by
which the search space of QoS-cost combinations is explored. This approach is mainly

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:22 J.Garcı́a-Galán et al.

focused on service selection rather than features selection and aims to maximise the
satisfaction of a single user. Our aim instead is to maximise global user’ preferences
and to minimise obtrusiveness of adaptation. A security oriented perspective is instead
assumed by Bernabe et al. [2014] who propose an advanced authorisation model that
provides conditional role based access control. This adapts the privileges assigned to
roles depending on the groups of tenants sharing the same resources.

Research on SPLs is highly related to our paper. The idea of using variability tech-
niques to model the adaptation space is not new. For example, Bencomo et al. [2008]
propose the use of variability modelling to define the runtime adaptation space. About
multi-tenancy and SPLs, Schroeter et al. [2012a,b] use variability and SPLs tech-
niques to assist the configuration of multi-tenant applications. The authors identify
configuration requirements and propose a configuration process using FMs [Schroeter
et al. 2012b], and also define requirements and middleware for a variable multi-tenant
architecture [Schroeter et al. 2012a]. However, this work has not considered how to re-
configure multi-tenant applications at runtime, when user preferences, available ser-
vice configurations, and infrastructural constraints change.

Mietzner et al. [2009] propose to use variability modelling techniques to manage the
variability of SaaS applications and their requirements. Specifically, they use variabil-
ity models to configure and deploy SaaS applications for different tenants. However,
they focus on modelling the variability and deploying different variants of a SaaS ap-
plication instance. Variability of different cloud providers has also been analysed and
modelled by Garcı́a-Galán et al. [2013], in order to assist the migration of an in-house
infrastructure to the cloud. However, this approach works with hard requirements
and ignores changes of user preferences. Similarly to us, Stein et al. [2014] consider
the problem of configuring multi-tenant services in order to better satisfy tenant pref-
erences on average. Based on such preferences, different product configurations using
different strategies from the social theory are suggested. However, preferences are only
expressed as hard and soft constraints, and the analysis does not take into account
infrastructural constraints that might prevent the satisfaction of users preferences.
Furthermore, the approach is not adopted to support runtime reconfiguration and, for
this reason, feasibility of the proposed analysis at runtime has not been investigated.

Several research efforts have been made to investigate multi-objective optimisation
in applications characterised by variability. Guo et al. [2011] use a genetic algorithm
to find optimal FM configurations for a single objective and user. Sayyad et al. [2013]
perform multi-objective optimisation of several large FMs using metaheuristics tech-
niques. However, their objective functions are fixed (i.e. minimise errors and cost, or
maximise number of features), while our fitness function depends on the specific user
preferences. Finally, other work has explored techniques for solving conflicts in a con-
figuration process. White et al. [2010] propose a technique in this direction that only
considers a single user and a minimal changes criterion. While, although Garcı́a-Galán
et al. [2013] consider multiple users, after detecting the conflicts these users have to
define explicitly the impact of every solution on their preferences satisfaction.

10. CONCLUSION AND FUTURE WORK
In this paper, we present an approach to support user-centric adaptation of multi-
tenant services. We motivate our proposal by using a multi-tenant DaaS case study
and explain how to engineer the activities of the MAPE loop necessary to support
user-centric adaptation. In this paper we focus on the analysis activity of the MAPE
loop that identifies a service reconfiguration which maximises tenants preferences sat-
isfaction. The analysis also guarantees that the computed service reconfiguration can
be provisioned by using the infrastructural resources available at the provider side.
The analysis takes as input the model of the service and the user preferences. We use

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

User-centric Adaptation Analysis of Multi-tenancy 39:23

FMs to model the multi-tenant service, which, more precisely, describes the service
configuration space, the infrastructural constraints, the workload, and the obtrusive-
ness of the service configurations. We adopt the SOUP preference model to represent
user preferences.

The analysis is interpreted as a multi-objective constrained optimisation problem,
where the different objectives are defined by the preferences of the tenants. This opti-
misation problem is solved by using genetic algorithms (FastPGA and NSGAII), which
identify the Pareto front of potential candidate reconfigurations. Obtained experimen-
tal results demonstrate that our analysis approach 1) identifies reconfigurations that
improve user satisfaction and 2) can be performed at runtime. FastPGA provides more
effective results for smaller FMs, while NSGAII is more effective when bigger FMs
have to be analysed.

As future work, we are planning to evaluate the applicability of our approach with
practitioners by using real multi-tenant services. This will require collecting experi-
mental data related to the impact that specific service features have on the consump-
tion of the infrastructural resources. Regarding the whole user-centric adaptation
problem, we will integrate our analysis with the other activities of the MAPE loop.
In particular, for the monitoring activity we will leverage existing work [Gallacher
et al. 2013] to measure user preferences in a non-intrusive and precise way. For the
planning and execution activities we will adopt real multi-tenant services to identify
possible strategies to enact a service reconfiguration on the system at runtime depend-
ing on the current configuration and the number of users. Finally, we are planning to
conduct empirical studies to estimate more precisely how adaptation obtrusiveness is
perceived by real users.

Acknowledgements
We want to thank the anonymous reviewers for their comments, which were very beneficial to improve
the quality of this work significantly. We are also grateful to J.M. Garcı́a for the explanations on the user
preferences modelling, and to J.A. Parejo and A. Sayyad for their advices on the experimentation.

REFERENCES

R. Ali, C. Solis, I. Omoronyia, M. Salehie, and B. Nuseibeh. Social Adaptation: When Software
Gives Users a Voice. In Proc. of the 7th Int. Conf. on the Evaluation of Novel Approaches to
Software Engineering, 2012.

M. Asadi, S. Soltani, D. Gasevic, M. Hatala, and E. Bagheri. Toward Automated Feature
Model Configuration with Optimizing Non-functional Requirements. Information and Soft-
ware Technology, 56(9):1144–1165, 2014.

L. Baresi, S. Guinea, and L. Pasquale. Service-Oriented Dynamic Software Product Lines. IEEE
Computer, 45(10):42–48, 2012.

D. Benavides, S. Segura, and A. Ruiz-Cortes. Automated Analysis of Feature Models 20 Years
Later: A Literature Review. Information Systems, 35(6):615–636, 2010.

N. Bencomo, P. Sawyer, G. S. Blair, and P. Grace. Dynamically Adaptive Systems are Product
Lines too: Using Model-Driven Techniques to Capture Dynamic Variability of Adaptive Sys-
tems. In Proc. of the 12th Int. Conf. on Software Product Lines (Workshops), pages 23–32,
2008.

J. B. Bernabe, J. M. M. Perez, J. M. A. Calero, F. J. G. Clemente, G. M. Perez, and A. F. G.
Skarmeta. Semantic-Aware Multi-Tenancy Authorization System for Cloud Architectures.
Future Generation Computer Systems, 32:154–167, 2014.

C.-P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and A. t Hart. Enabling multi-
tenancy: An industrial experience report. In Proc. of the 26th Int. Conf. on Software Main-
tenance, pages 1–8, 2010.

C. Cabanillas, J. M. Garcı́a, M. Resinas, D. Ruiz, J. Mendling, and A. Ruiz-Cortés. Priority-
Based Human Resource Allocation in Business Processes. In Proc. of the 11th Int. Conf. on

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:24 J.Garcı́a-Galán et al.

Service-Oriented Computing, pages 374–388, 2013.
V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. Lo Presti, and R. Mirandola. Moses: A

Framework for QoS Driven Runtime Adaptation of Service-Oriented Systems. IEEE Trans-
actions on Software Engineering, 38(5):1138–1159, 2012.

S. Caton and O. Rana. Towards Autonomic Management for Cloud Services Based Upon Volun-
teered Resources. Concurrency and Computation: Practice and Experience, 24(9):992–1014,
2012.

Citrix. Citrix Virtual Desktop Handbook 7.x. http://support.citrix.com/article/CTX139331, 2013.
F. Dalpiaz, E. Serral, P. Valderas, P. Giorgini, and V. Pelechano. A NFR-based framework for

user-centered adaptation. In Proc. of the 31st International Conference on Conceptual Model-
ing, pages 439–448, 2012.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

J. J. Durillo and A. J. Nebro. jMetal: A Java Framework for Multi-objective Optimization. Ad-
vances in Engineering Software, 42(10):760–771, 2011.

E. Ostrom. Governing the Commons. CUP, 1990.
H. Eskandari, C. D. Geiger, and G. B. Lamont. FastPGA: A Dynamic Population Sizing Approach

for Solving Expensive Multiobjective Optimization Problems. In Proc. of the 4th Int. Conf. on
Evolutionary Multi-Criterion Optimization, pages 141–155. Springer, 2007.

K. Z. Gajos, M. Czerwinski, D. S. Tan, and D. S. Weld. Exploring the Design Space for Adaptive
Graphical User Interfaces. In Proc. of the Int. Working Conf. on Advanced Visual Interfaces,
pages 201–208, 2006.

S. Gallacher, E. Papadopoulou, N. K. Taylor, and M. H. Williams. Learning User Preferences
for Adaptive Pervasive Environments: An Incremental and Temporal Approach. ACM Trans.
Auton. Adapt. Syst., 8(1), 2013.

J. M. Garcı́a, M. Junghans, D. Ruiz, S. Agarwal, and A. Ruiz-Cortés. Integrating Semantic
Web Services Ranking Mechanisms Using a Common Preference Model. Knowledge-Based
Systems, 49:22–36, 2013.

J. Garcı́a-Galán, O. F. Rana, P. Trinidad, and A. Ruiz-Cortés. Migrating to the Cloud: a Software
Product Line based analysis. In Proc. of the 3rd Int. Conf. on Cloud Computing and Services
Science, pages 416–426, 2013.

J. Garcı́a-Galán, P. Trinidad, and A. Ruiz-Cortés. Multi-user Variability Configuration: A Game
Theoretic Approach. In Proc. of the 28th Int. Conf. on Automated Software Engineering, pages
574–579, 2013.

J. Garcı́a-Galán, L. Pasquale, P. Trinidad, and A. R. Cortés. User-centric adaptation of multi-
tenant services: Preference-based analysis for service reconfiguration. In Proc. of the 9th Int.
Symp. on Software Engineering for Adaptive and Self-Managing Systems, pages 65–74, 2014.

J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A Genetic Algorithm for Optimized Feature Selec-
tion with Resource Constraints in Software Product Lines. Journal of Systems and Software,
84(12):2208–2221, 2011.

C. Inzinger, B. Satzger, P. Leitner, W. Hummer, and S. Dustdar. Model-based Adaptation of
Cloud Computing Applications. In Proc. of the 1st Int. Conf. on Model-Driven Engineering
and Software Development, pages 351–355, 2013.

W. Ju and L. Leifer. The Design of Implicit Interactions: Making Interactive Systems Less
Obnoxious. Design Issues, 24(3):72–84, 2008.

K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021, Software Engineering In-
stitute, Carnegie Mellon University, 1990.

J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer, 36(1):41–50,
2003.

I. Kumara, J. Han, A. Colman, T. Nguyen, and M. Kapuruge. Sharing with a Difference: Re-
alizing Service-Based SaaS Applications with Runtime Sharing and Variation in Dynamic
Software Product Lines. In Proc. of the 10th Int. Conf. on Services Computing, pages 567–574,
2013.

S. Lamparter, A. Ankolekar, R. Studer, and S. Grimm. Preference-based Selection of Highly
Configurable Web Services. In Proc. of the 16th Int. Conf. on World Wide Web, pages 1013–
1022, 2007.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

User-centric Adaptation Analysis of Multi-tenancy 39:25

S. Malek, N. Medvidovic, and M. Mikic-Rakic. An extensible framework for improving a dis-
tributed software system’s deployment architecture. IEEE Transactions on Software Engi-
neering, 38(1):73–100, 2012.

R. T. Marler and J. S. Arora. Survey of Multi-objective Optimization Methods for Engineering.
Structural and Multidisciplinary Optimization, 26(6):369–395, 2004.

C. C. Marquezan, F. Wessling, A. Metzger, K. Pohl, C. Woods, and K. Wallbom. Towards Exploit-
ing the Full Adaptation Potential of Cloud Applications. In Proc. of the 6th Int. Workshop on
Principles of Engineering Service-Oriented and Cloud Systems, pages 48–57, 2014.

M. Maurer, I. Brandic, and R. Sakellariou. Adaptive Resource Configuration for Cloud Infras-
tructure Management. Future Generation Computer Systems, 29(2):472–487, 2013.

R. Mietzner, A. Metzger, F. Leymann, and K. Pohl. Variability Modeling to Support Customiza-
tion and Deployment of Multi-tenant-aware Software as a Service Applications. In Proc. of
the Int. Workshop on Principles of Engineering Service-Oriented Systems, pages 18–25, 2009.

R. B. Myerson. Game theory: analysis of conflict. Harvard University Press, 1991.
V. Nallur and R. Bahsoon. A Decentralized Self-Adaptation Mechanism for Service-Based Ap-

plications in the Cloud. IEEE Transactions on Software Engineering, 39(5):591–612, 2013.
Y. V. Natis. Gartner Reference Model for Elasticity and Multitenancy. Technical report, Gartner,

Inc., 2012.
J. Pitt, J. Schaumeier, D. Busquets, and S. Macbeth. Self-Organising Common-Pool Resource

Allocation and Canons of Distributive Justice. In Proc. of the 6th Int. Conference on Self-
Adaptive and Self-Organizing Systems, pages 119–128, 2012.

A. B. Sánchez, S. Segura, and A. Ruiz-Cortés. The Drupal Framework: A Case Study to Evaluate
Variability Testing Techniques. In Proc. of the 8th Int. Work. on Variability Modelling of
Software-intensive Systems, page 11, 2014.

A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar. Scalable Product Line Configuration: A
Straw to Break the Camel’s Back. In Proc. of the 28th Int. Conf. on Automated Software
Engineering, pages 465–474, 2013.

J. Schroeter, S. Cech, S. Götz, C. Wilke, and U. Assmann. Towards Modeling a Variable Archi-
tecture for Multi-tenant SaaS-Applications. In Proc. of the 6th Work. on Variability Modeling
of Software-Intensive Systems, 2012a.

J. Schroeter, P. Mucha, M. Muth, K. Jugel, and M. Lochau. Dynamic configuration management
of cloud-based applications. In Proc. of the 16th Int. Software Product Line Conf. - Volume 2,
pages 171–178, 2012b.

S. Segura, J. Á.Galindo, D. Benavides, J. A. Parejo, and A. Ruiz-Cortés. BeTTy: Benchmark-
ing and Testing on the Automated Analysis of Feature Models. In Proc. of the 6th Work. on
Variability Modeling of Software-Intensive Systems, Leipzig, Germany, 2012.

H. Song, S. Barrett, A. Clarke, and S. Clarke. Self-adaptation with End-User Preferences: Using
Run-Time Models and Constraint Solving. In Proc. of the 16th Int. Conf. on Model-Driven
Engineering Languages and Systems, pages 555–571, 2013.

C. Speier, I. Vessey, and J. S. Valacich. The Effects of Interruptions, Task Complexity, and In-
formation Presentation on Computer-Supported Decision-Making Performance. Decision Sci-
ences, 34(4):771–797, 2003.

J. Stein, I. Nunes, and E. Cirilo. Preference-based Feature Model Configuration with Multiple
Stakeholders. In Proc. of the 18th Int. Software Product Lines Conf., pages 132–141, 2014.

T. Thum, C. Kastner, S. Erdweg, and N. Siegmund. Abstract Features in Feature Modeling. In
Proc. of the 15th Int. Software Product Line Conf., page 10, 2011.

P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and A. Jimenez. FAMA Framework. In
12th Software Product Lines Conf., pages 359–359, 2008.

B. Vankeirsbilck, L. Deboosere, P. Simoens, P. Demeester, F. De Turck, and B. Dhoedt. User
Subscription-Based Resource Management for Desktop-as-a-Service Platforms. The Journal
of Supercomputing, 69(1):412–428, 2014.

G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong. A Game-theoretic Method of Fair Resource
Allocation for Cloud Computing Services. The Journal of Supercomputing, 54(2):252–269,
2010.

J. White, D. Benavides, D. C. Schmidt, P. Trinidad, B. Dougherty, and A. Ruiz-Cortes. Automated
Diagnosis of Feature Model Configurations. Journal of Systems and Software, 83(7):1094–
1107, 2010.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.

