Towards Formalising Sustainable Security Systems

Liliana Pasquale

9th Conference on Formal Methods in Software Engineering (FormaliSE 2021)

2

J /

Agenda

Introduction to Sustainable Security

3 Key Ideas to Support Sustainable Security

A Sustainable Security Roadmap

Sustainability in Software Engineering

Software sustainability has been generally considered as the capacity of a software system to endure [Venters et al., 2017]

Sustainable Software:

[Beckers et al., 2015]

Software Engineering for Sustainability:

[Beckers et al., 2015]

Sustainability in Software Engineering

Software sustainability has been generally considered as the capacity of a software system to endure [Venters et al., 2017]

Sustainable Software: principles, practices and process that contribute to software endurance [Beckers et al., 2015]

Software Engineering for Sustainability:

[Beckers et al., 2015]

Sustainability in Software Engineering

Software sustainability has been generally considered as the capacity of a software system to endure [Venters et al., 2017]

Sustainable Software: principles, practices and process that contribute to software endurance [Beckers et al., 2015]

Software Engineering for Sustainability: Building software systems that support one or more dimensions of sustainability

[Beckers et al., 2015]

- Environmental
- Economical
- Individual \bullet
- Societal
- Technical.

Sustainable Security

Software sustainability has been generally considered as the capacity of a software system to endure [Venters et al., 2017]

Sustainable Software: principles, practices and process that contribute to software endurance [Beckers et al., 2015]

Sustainable Security

Capacity of Software to Endure Satisfaction of Security Requirements

Ensuring Sustainable Security in Cyber-Physical Systems is Challenging!

Sustainable Security

Capacity of Software to Continuously Satisfy Security Requirements

Reason about and counteract threats brought by an **extended attack surface**

Extended Attack Surface: Cyber-Physical Threats

Extended Attack Surface: Cyber-Physical Threats

Extended Attack Surface: Physical-Cyber Threats

Sustainable Security

Capacity of Software to Continuously Satisfy Security Requirements

- Handle uncertainties brought by unexpected threats

Reason about and counteract threats brought by an extended attack surface

Uncertainty: Unexpected Threats

Sustainable Security

Capacity of Software to Continuously Satisfy Security Requirements

- Handle **uncertainties** brought by unexpected threats
- Endure stakeholders' engagement

Reason about and counteract threats brought by an **extended attack surface**

Stakeholders: Human Operators need Explanations

Sustainable Security

Capacity of Software to Continuously Satisfy Security Requirements

- Handle **uncertainties** brought by unexpected threats
- Endure stakeholders' engagement

Reason about and counteract threats brought by an **extended attack surface**

- Formalize and reason about the extended attack surface
- Discover and counteract new threats
- Provide explanations to human operators

3 Key Ideas to Support Sustainable Security

- Formalize and reason about the extended attack surface
- Discover and counteract new threats
- Provide explanations to human operators

3 Key Ideas to Support Sustainable Security

Location of objects and agents

Structure of space

- Proximity
- Reachability

Connectivity

Requirements for Modelling Topology

- Represent structure and communication
- Enable reasoning about the effects of topological changes

- π-calculus

• Bigraphical Reactive systems (BRS) [Milner '09] -Extend bigraphs with well defined semantics of dynamic behaviour.

• Ambient Calculus [Cardelli & Gordon '98, Tsigkanos et al. '14]

lacksquare

Place graph

- A forest of trees
- Nesting lacksquare

Bigraphs

Link graph

A hypergraph of named edges over the set of nodes of the place graph Many-to-many relationships among nodes

Bigraphs – Algebraic Notation

P.Q	$Nesting\ (P\ contains\ Q$
-i	$Site\ numbered\ i$
$K_{\overrightarrow{w}}.(U)$	$Node\ associated\ with$
	$with \ names \ in \ vector$
/x.U	$Ports\ with\ name\ x\ in$
$P \parallel Q$	$Juxta position \ of \ root.$
$P \circ Q$	Composition
$P \mid Q$	$Juxta position \ of \ child$

Q)

 $control \ K \ having \ ports$ w. K $contains \ U$ U are connected

dren
P.Q	$Nesting\ (P\ contains\ Q$
-i	$Site\ numbered\ i$
$K_{\overrightarrow{w}}.(U)$	$Node\ associated\ with$
	$with \ names \ in \ vector$
/x.U	$Ports\ with\ name\ x\ in$
$P \parallel Q$	$Juxta position \ of \ root$
$P \circ Q$	Composition
$P \mid Q$	$Juxta position \ of \ child$

Q)

control K having ports w. K contains UU are connected

s

dren

 $(Room_{Office}.(Agent_{Mallory} | HMI_{wlink})) || (Room_{wifiarea}.(Wifi_{wlink,lan} | (_1)))$ || ((Room_{StgZone2,wlink}, (RDU_{1,wlink}, (Vaccine))) | Room_{StgZone3}, (Cooled)

P.Q	$Nesting\ (P\ contains\ Q$
-i	$Site\ numbered\ i$
$K_{\overrightarrow{w}}.(U)$	$Node\ associated\ with$
	$with \ names \ in \ vector$
/x.U	$Ports \ with \ name \ x \ in$
$P \parallel Q$	$Juxta position \ of \ root$
$P \circ Q$	Composition
$P \mid Q$	$Juxta position \ of \ child$

 $(Room_{Office}.(Agent_{Mallory} | HMI_{wlink})) || (Room_{wifiarea}.(Wifi_{wlink,lan} | (_1)))$ || ((Room_{StgZone2,wlink}. (RDU_{1,wlink}. (Vaccine))) | Room_{StgZone3}. (Cooled)

Q)

control K having ports w. K contains UU are connected

s

dren

P.Q	$Nesting\ (P\ contains\ Q$
-i	$Site\ numbered\ i$
$K_{\overrightarrow{w}}.(U)$	$Node \ associated \ with$
	$with \ names \ in \ vector$
/x.U	$Ports \ with \ name \ x \ in$
$P \parallel Q$	$Juxta position \ of \ root$
$P \circ Q$	Composition
$P \mid Q$	$Juxta position \ of \ child$

 $(Room_{Office}.(Agent_{Mallory} \mid HMI_{wlink})) \mid | (Room_{wifiarea}.(Wifi_{wlink,lan} \mid (_1)))$ (Room_{StgZone2,wlink}. (RDU_{1,wlink}. (Vaccine))) | Room_{StgZone3}. (Cooled)

Q)

control K having ports w. K contains U

U are connected

s

dren

P.Q	$Nesting\ (P\ contains\ Q$
-i	$Site\ numbered\ i$
$K_{\overrightarrow{w}}.(U)$	$Node \ associated \ with$
	$with \ names \ in \ vector$
$l \propto II$	Ports with name r in
/x.0	
$P \parallel Q$	Juxtaposition of root
$P \parallel Q$ $P \circ Q$	Juxtaposition of root Composition
$P \parallel Q$ $P \circ Q$ $P \mid Q$	Juxtaposition of root Composition Juxtaposition of child

 $\left(Room_{Office} \left(Agent_{Mallory} \mid HMI_{wlink} \right) \right) \mid \left(Room_{wifiarea} \left(Wifi_{wlink,lan} \mid (-1) \right) \right)$ $\left| \left[\left(Room_{StgZone2,wlink} \left(RDU_{1,wlink} \left(Vaccine \right) \right) \mid Room_{StgZone3} \left(Cooled \right) \right) \right] \right]$

Q)

 $control \ K \ having \ ports$ $w. \ K \ contains \ U$

 $U \ are \ connected$

s

dren

Dynamic Behaviour

Reaction Rules $(R \rightarrow R')$

For Example: Action *enter_room*

Agent_n.- $_0$ | Room_r. $_1$ | $_2$

A portion of the bigraph matching a redex R is rewritten as the reactum R'.

 $Room_r.(Agent_n.-_0 |_1)|_2$

Specifying Security Requirements

Example: Violation of the vaccine integrity (SR1)

and not cooled

 $Room_{\chi}$. (RDU_{γ} . (Vaccine) | Locked)

Security Requirements: Branching Time Temporal Logic (CTL). $AG(\neg(SR1))$

C. Tsigkanos, L. Pasquale, C. Ghezzi and B. Nuseibeh, "On the Interplay Between Cyber and Physical Spaces for Adaptive Security," in IEEE Transactions on Dependable and Secure Computing, vol. 15, no. 3, pp. 466-480, 1 May-June 2018, doi: 10.1109/TDSC.2016.2599880.

- A topological configuration described by a bigraph C satisfies a property if the bigraph specifying the property can be matched against C.

 - An RDU transporting the vaccine is in a storage zone that is locked

Enabling Automated Reasoning

The BRS-based specification is transformed into an equivalent Labelled Transition System (LTS).

Each LTS state represents a different bigraph configuration

Each LTS transition represents a different application of the reaction rules leading to new configurations

C. Tsigkanos, L. Pasquale, C. Ghezzi and B. Nuseibeh, "On the Interplay Between Cyber and Physical Spaces for Adaptive Security," in IEEE Transactions on Dependable and Secure Computing, vol. 15, no. 3, pp. 466-480, 1 May-June 2018, doi: 10.1109/TDSC.2016.2599880.

Enabling Automated Reasoning

The process is iterated by exploring all configurations and generating new LTS states accordingly.

C. Tsigkanos, L. Pasquale, C. Ghezzi and B. Nuseibeh, "On the Interplay Between Cyber and Physical Spaces for Adaptive Security," in IEEE Transactions on Dependable and Secure Computing, vol. 15, no. 3, pp. 466-480, 1 May-June 2018, doi: 10.1109/TDSC.2016.2599880.

```
Room_{p}.(Agent<sub>b</sub>.__1 | Room_{k}.__2 | Agent_{a}.-_0)
```

 $Agent_{a} - 0 | Room_{b} (Room_{k} (Agent_{b} - 1 | 2))$

Speculative Threat Analysis

- Identifies potential violations of security requirements that take place in future evolutions of the cyber-physical space.
- Interpret the BRS over an LTS

C. Tsigkanos, L. Pasquale, C. Ghezzi and B. Nuseibeh, "On the Interplay Between Cyber and Physical Spaces for Adaptive Security," in IEEE Transactions on Dependable and Secure Computing, vol. 15, no. 3, pp. 466-480, 1 May-June 2018, doi: 10.1109/TDSC.2016.2599880.

Perform explicit state model checking to discover LTS states representing violations

Computing Security Controls

Disable all actions in P leading to a violating states OR

C. Tsigkanos, L. Pasquale, C. Ghezzi and B. Nuseibeh, "On the Interplay Between Cyber and Physical Spaces for Adaptive Security," in IEEE Transactions on Dependable and Secure Computing, vol. 15, no. 3, pp. 466-480, 1 May-June 2018, doi: 10.1109/TDSC.2016.2599880.

When a state (P) immediately before a violating state is entered

Computing Security Controls

- Disable all actions in P leading to a violating states OR
- Enforce the execution of an action that can lead to a safe state

C. Tsigkanos, L. Pasquale, C. Ghezzi and B. Nuseibeh, "On the Interplay Between Cyber and Physical Spaces for Adaptive Security," in IEEE Transactions on Dependable and Secure Computing, vol. 15, no. 3, pp. 466-480, 1 May-June 2018, doi: 10.1109/TDSC.2016.2599880.

When a state (P) immediately before a violating state is entered

Computing Security Controls

When a violating state (V) is reached

- Disable all transitions in V leading to a violating states AND
- Enforce the execution of a transition(s) leading to a safe state

C. Tsigkanos, L. Pasquale, C. Ghezzi and B. Nuseibeh, "On the Interplay Between Cyber and Physical Spaces for Adaptive Security," in IEEE Transactions on Dependable and Secure Computing, vol. 15, no. 3, pp. 466-480, 1 May-June 2018, doi: 10.1109/TDSC.2016.2599880.

- Formalize and reason about the extended attack surface
- Discover and counteract new threats
- Provide explanations to human operators

3 Key Ideas to Support Sustainable Security

Lifecycle for Handling Unknown Threats

Lifecycle for Handling Unknown Threats

Evolving Requirement Specifications

Garcez, AS d'Avila, Alessandra Russo, Bashar Nuseibeh, and Jeff Kramer. "Combining abductive reasoning and inductive learning to evolve requirements specifications." *IEE Proceedings-Software* 150, no. 1 (2003): 25-38.

Abductive Reasoning

would prove a given requirement.

In event-driven system descriptions, abduction would be used to identify a trace of events and system transitions (starting from the initial state) that

Abductive Learning

- In refutation mode, abduction allows the generation of counter-examples
- If the abductive procedure finds such a set (of incorrect state transitions), then acts as a set of counter-examples to the validity of P.

(incorrect system transitions) as diagnostic information of properties violation.

Abductive Learning - Example

Example described above formalized using propositional logic programming: **D:** $In(RDU, Room1) \land Connected(Room1, Room2) \land Enter(RDU, Room2) \rightarrow$

P: $In(DangMaterial, Room) \rightarrow \neg(RDU, Room)$

 $D \cup \Delta^+ \vdash P$

 $D \cup \Delta^- \vdash \neg P$

In(RDU, Room2)

Abductive Learning - Example

Example described above formalized using propositional logic programming: **D**: $In(RDU, Room1) \land Connected(Room1, Room2) \land Enter(RDU, Room2) \rightarrow$ In(RDU, Room2)

P: $In(DangMaterial, Room) \rightarrow \neg(RDU, Room)$

 $\Delta^{+} = \{In(RDU, Room1), Connected(Room1, Room2), Enter(RDU, Room2), \}$ In'(RDU, Room2)

 $\Delta^{-} = In(RDU, Room1), Connected(Room1, Room2), Enter(RDU, Room2),$ $In(DangMaterial, Room2), In'(RDU, Room2)\}$

Inductive Learning

 $D \cup h \vdash \Delta^+$ $D \cup h \nvDash \Delta^-$

Aims to find hypotheses, in the form of rules, that are consistent with the description of the system (background knowledge) to explain a given set of examples.

Inductive Learning - Example

- $\Delta^{+} = \{In(RDU, Room1), Connected(Room1, Room2), Enter(RDU, Room2), Name (RDU, Room2),$ In'(RDU, Room2)
- $\Delta^{-} = In(RDU, Room1), Connected(Room1, Room2), Enter(RDU, Room2),$ $In(DangMaterial, Room2), In'(RDU, Room2)\}$

 $In(RDU, Room1) \land Connected(Room1, Room2) \land Enter(RDU, Room2) \land \neg In(DangMaterial, Room2) \rightarrow (RDU, Room2) \land \neg In(DangMaterial, Room2) \land (RDU, Room2) \land \neg In(DangMaterial, Room2) \rightarrow (RDU, Room2) \land \neg In(RDU, Room2) \land \neg In(ROU, ROU) \land \neg In(ROU, ROU) \land \neg In(ROU, ROU) \land \neg In(ROU, ROU) \land \neg In(ROU) \land$ In(RDU, Room2)

- Formalize and reason about the extended attack surface
- Discover and counteract new threats
- Provide explanations to human operators

3 Key Ideas to Support Sustainable Security

Objective

> E.g., justifying why a certain security requirement is violated

information overload.

Providing explanations about why a system produces a certain behaviour

Providing a human operator with a full model of the system, the operating environment and their current state is infeasible due to

Abstraction is Key

- Provide a high level of detail for the aspects of the system that affect under-specified.
- Aligned with the principles of Situation Awareness Oriented Design
- Can facilitate decision-making.
- machine interfaces [Combefis et al. 2011]

Abstraction can be used to reduce the complexity of the model

satisfaction of some requirements of interest, while leaving irrelevant aspects

> Abstraction has been used in previous work to provide explanations about

Abstraction is Key

- requirements of interest, while leaving irrelevant aspects under-specified.
- interfaces [Combefis et al. 2011]

L. Pasquale, V. Gervasi, "On the Use of Abstractions to Provide Explanations," submitted at the ESEC/FSE 2021 IVR Track.

Abstraction can be used to reduce the complexity of the model

> Provide a high level of detail for the aspects of the system that affect satisfaction of some

> Abstraction has been used in previous work to provide explanations about machine

Example – Abstract State Machines (ASM)

- states.
- **State =>** defined as a set of locations
- Location => identified by a function symbol and a list of parameters associated with values

• **ASM**: A set of rules that are conditioned by, and may generate updates for,

Example – Abstract State Machines (ASM)

- states.
- **State =>** defined as a set of locations
- Location => identified by a function symbol and a list of parameters associated with values

System Model

Concrete System Model

forall r in Rooms if curtemp(r) > destemp(r) + h then aircond(r) := onif curtemp(r) < destemp(r) - h then aircond(r) := offif curtemp(r) > destemp(r) + k then heating(r) := offif curtemp(r) < destemp(r) - k then heating(r) := onif presence(r) then lights(r) := on

• **ASM**: A set of rules that are conditioned by, and may generate updates for,

Example – Abstract State Machines (ASM)

- states.
- **State =>** defined as a set of locations
- Location => identified by a function symbol and a list of parameters associated with values

System Model

Concrete System Model

forall r in Rooms if curtemp(r) > destemp(r) + h then aircond(r) := onif curtemp(r) < destemp(r) - h then aircond(r) := offif curtemp(r) > destemp(r) + k then heating(r) := offif curtemp(r) < destemp(r) - k then heating(r) := onif presence(r) then lights(r) := on

• **ASM**: A set of rules that are conditioned by, and may generate updates for,

 c_1 $\forall r \in Rooms, \neg(aircond(r) = On \land heating(r) = On)$ c_2) $\forall r \in Rooms$, window $(r) = open \Rightarrow$ $(aircond(r) = off \land heating(r) = off)$ c_3) $\forall r \in Rooms \setminus Halls, \neg presence(r) \Rightarrow lights(r) = off$

Focus on Interesting Variables

 c_1 $\forall r \in Rooms, \neg(aircond(r) = On \land heating(r) = On)$

forall r in Rooms if curtemp(r) > destemp(r) + h then aircond(r) := onif curtemp(r) < destemp(r) - h then aircond(r) := offif curtemp(r) > destemp(r) + k then heating(r) := offif curtemp(r) < destemp(r) - k then heating(r) := onif presence(r) then lights(r) := on

forall r in $\{q\}$ if $curtemp(r) > destemp(r) + h \dots$

Concrete System Model

Focus on Interesting Locations

 c_1) $\forall r \in Rooms, \neg(aircond(r) = On \land heating(r) = On)$

The only locations affecting the violated constraint are aircond(q) and heating(q)

forall r in $\{q\}$ if $curtemp(r) > destemp(r) + h \dots$

if curtemp(q) > destemp(q) + h then aircond(q) := onif curtemp(q) < destemp(q) − h then aircond(q) = off</pre> if curtemp(q) > destemp(q) + k then heating(q) := offif curtemp(q) < destemp(q) - k then heating(q) := on

Step 1 Step 2

 c_1 $\forall r \in Rooms, \neg(aircond(r) = On \land heating(r) = On)$

We can splice the model considering 3 sets of rules:

- state at time of violation
- **R2**: those that set one of the interesting locations to a value different from what has been observed in the state at the time of violation • **R3:** those that do not update the interesting locations

if curtemp(q) > destemp(q) + h then aircond(q) := on if curtemp(q) < destemp(q) - h then aircond(q) = offif curtemp(q) > destemp(q) + k then heating(q) := offif curtemp(q) < destemp(q) - k then heating(q) := on

- The values of aircond(r) and heating(r) are both on
- **R1**: those that set one of the interesting locations to the value observed in the

 c_1 $\forall r \in Rooms, \neg(aircond(r) = On \land heating(r) = On)$

The values of aircond(r) and heating(r) are both on

We can splice the model considering 3 sets of rules:

- state at time of violation
- has been observed in the state at the time of violation
- **R3:** those that do not update the interesting locations

if curtemp(q) > destemp(q) + h then aircond(q) := on if curtemp(q) < destemp(q) - h then aircond(q) = offif curtemp(q) > destemp(q) + k then heating(q) := offif curtemp(q) < destemp(q) - k then heating(q) := on

R1: those that set one of the interesting locations to the value observed in the

R2: those that set one of the interesting locations to a value different from what

 c_1 $\forall r \in Rooms, \neg(aircond(r) = On \land heating(r) = On)$

The values of aircond(r) and heating(r) are both on

We can splice the model considering 3 sets of rules:

- state at time of violation
- has been observed in the state at the time of violation
- -R3: those that do not update the interesting locations

if curtemp(q) > destemp(q) + h then aircond(q) := on if curtemp(q) < destemp(q) - h then aircond(q) = offif curtemp(q) > destemp(q) + k then heating(q) := offif curtemp(q) < destemp(q) - k then heating(q) := on

R1: those that set one of the interesting locations to the value observed in the

R2: those that set one of the interesting locations to a value different from what

 c_1 $\forall r \in Rooms, \neg(aircond(r) = On \land heating(r) = On)$

The values of aircond(r) and heating(r) are both on

We can splice the model considering 3 sets of rules:

- state at time of violation
- has been observed in the state at the time of violation
- **R3:** those that do not update the interesting locations

curtemp(q) > destemp(q) + hcurtemp(q) < destemp(q) - k $curtemp(q) \ge destemp(q) - h$ $curtemp(q) \le destemp(q) + k$

R1: those that set one of the interesting locations to the value observed in the

R2: those that set one of the interesting locations to a value different from what

Formalize and reason about the extended attack surface

- Exploit possible compositionality of security properties
- Explore model-based diagnosis techniques (e.g., hierarchical to reduce the computational complexity of the diagnosis.

diagnosis [Mozetič, 1991][Siddiqi, 2007]), widely explored in control theory

Discover and Counteract New Threats

Continuous Threat Analysis

Threat Analysis

Digital Twin

> Identification of Security Controls

Enactment of Security Controls

> Real System

Vulnerability discovery

Provide Explanations to Human Operators

- Formalize and create a collection of abstraction strategy that can be systematically selected to provide explanations
- Select a suitable level of abstraction depending on:
 - the cognitive abilities of the human operator
 the time available to a human operator to make a decision

References

- 1. 2017.
- 2. Conference on Software Engineering, vol. 2, pp. 467-476. IEEE, 2015.
- 3. Computation Structure, 1998, pp. 140–155.
- R. Milner, "The Space and Motion of Communicating Agents," Cambridge University Press, 2009. 4.
- 5. aware adaptive security: Preventing requirements violations at runtime." In Proc of the 22nd InternationalRequirements Engineering Conference, pp. 203-212, 2014.
- 6. 2011.
- 7.
- 8.

Venters, Colin C., Norbert Seyff, Christoph Becker, Stefanie Betz, Ruzanna Chitchyan, Leticia Duboc, Dan McIntyre, and Birgit Penzenstadler. "Characterising sustainability requirements: A new species red herring or just an odd fish?." In 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Society Track (ICSE-SEIS), pp. 3-12. IEEE,

Becker, Christoph, Ruzanna Chitchyan, Leticia Duboc, Steve Easterbrook, Birgit Penzenstadler, Norbert Seyff, and Colin C. Venters. "Sustainability design and software: The karlskrona manifesto." In 2015 IEEE/ACM 37th IEEE International

L. Cardelli and A. D. Gordon, "Mobile Ambients," in Proc. of the 1st Int. Conf. on Foundations of Software Science and

Tsigkanos, Christos, Liliana Pasquale, Claudio Menghi, Carlo Ghezzi, and Bashar Nuseibeh. "Engineering topology

Combéfis, Sébastien, Dimitra Giannakopoulou, Charles Pecheur, and Michael Feary. "Learning system abstractions for human operators." In Proceedings of the international workshop on machine learning technologies in software engineering, pp. 3-10.

Igor Mozetič. 1991. Hierarchical Model-based Diagnosis. Int. Journal of Man- Machine Studies 35, 3 (1991), 329–362

Sajjad Ahmed Siddiqi, Jinbo Huang, et al. 2007. Hierarchical Diagnosis of Multiple Faults. In IJCAI, Vol. 7. 581–586.

THANK YOU!