
Towards Automated Logging for Forensic-Ready
Software Systems

Fanny Rivera-Ortiz
School of Computer Science

University College Dublin & Lero
Dublin, Ireland

Email: fanny.riveraortiz@ucdconnect.ie

Liliana Pasquale
School of Computer Science

University College Dublin & Lero
Dublin, Ireland

Email: liliana.pasquale@ucd.ie

Abstract—Security incidents can arise from the misuse of
existing software systems. Thus, appropriate logging mechanisms
should be implemented at the software level to support the
detection and investigation of security incidents. However, due
to insufficient logging, security incidents often go undetected
for long periods. Moreover, even after a security incident is
detected, there is not enough information to fully reconstruct
how an incident occurred. Insufficient logging may be due to the
limited security expertise of software developers, who may not
know what are the most critical security incidents. Also, for large
software systems and a multitude of potential misuse scenarios,
it is cumbersome to identify when and what logging instructions
should be implemented. In this paper, we propose a preliminary
idea to automate the development of “forensic-ready” software
systems. These systems can log a minimum amount of relevant
data that can be used to detect and investigate potential security
incidents. Our approach allows a security engineer to elicit a set
of potential software misuse scenarios, expressed as annotated
sequence diagrams. These diagrams are then used—together with
a control flow graph of the software system— to identify the exact
location where logging instructions should be placed and the
information they should log. Finally, logging instructions can be
injected into designated software system locations using Aspect-
Oriented Programming. We illustrate our approach using an
example of software misuse in a human resources management
software system.

Index Terms—Forensic Readiness; Forensic-Ready Software
Systems; Logging; Logging in Software Systems; Digital Foren-
sics

I. INTRODUCTION

Security incidents are increasing and threats are becoming
more diverse [1]. For example, in December 2018, Symantec
was blocking daily more than 1.3 million unique web attacks
on devices connected to the Internet [2]. For security incidents,
we refer to malicious activities that can violate either an
organization policy or a law [3]. Logs can store relevant
information such as, username, date, timestamp, description
of an event, which can shed light on how a security incident
happened [4]. Although researchers have proposed the use
of logs to detect and investigate security incidents [5], [6],
[7], [8], [9], security breaches often go undetected for long
periods, and/or it is not always possible to fully reconstruct
how an incident occurred.

The Open Web Application Security Project (OWASP) has
identified insufficient logging as one of the most critical

vulnerabilities for web applications [10]. For example, the
security breach targeting the Marriot Customer Reservation
Software System in November 2018 [11], was undetected
for four years [12] due to insufficient logging. Similarly, the
digital investigators that were tasked to reconstruct the 2013
Yahoo data breach [13] —the largest in history— were not
able to assess the real objective of the breach and identify
the offenders. Insufficient logging may be due to the limited
security expertise of software developers, who may not know
what are the most relevant security incidents, which could
occur. Also, for large software systems and a multitude of
potential security incidents, it is cumbersome to identify when
and what logging instructions should be implemented.

The notion of forensic-readiness has been proposed [14],
[15] to highlight the importance for organizations to preserve
digital data proactively (e.g., through logging), which may
facilitate detection and investigation of potential security in-
cidents. Forensic-readiness can maximise the potential to use
digital evidence, when required, whilst minimizing the costs
of an investigation. Although several approaches have been
proposed to support forensic-readiness [14], [16], [17], [18],
they mainly provide general guidelines at the organization
level [19]. They do not indicate how logging should be im-
plemented in existing software systems to collect information
about the relevant, potential security incidents.

In this paper, we propose a preliminary idea to automate
the development of “forensic-ready” software systems. These
systems can log a minimum amount of relevant data that can
be used to detect and investigate potential security incidents.
Our underlying assumption is that security incidents may arise
from the misuse of software (e.g., it may allow the illegitimate
modification of sensitive records). Our approach requires a
security engineer —who has expertise about potential secu-
rity incidents— to elicit a set of potential software misuse
scenarios, expressed as UML sequence diagrams. These are
reverse engineered by replaying the incident on the software
system. The UML sequence diagrams are then annotated with
information about the software system state that is relevant to
the misuse represented.

The annotated UML sequence diagrams are then used in
combination with a control flow graph of the software sys-
tem, to identify the exact location where logging instructions



should be placed and the information they should log. Finally,
we can instrument the software system to inject appropriate
logging instructions to designated software systems locations,
using Aspect-Oriented Programming (AOP). Automated gen-
eration of logging instructions removes from the software
developers the burden of making decisions about where to
log and what to log, to detect a set of security incidents. Note
that, while we aim to collect the minimal and relevant data,
currently, our work does not consider privacy concerns arising
from upcoming data protection regulations, such as the GDPR.
We illustrate our approach using a running example that
revolves around software for human resources management,
which allows the illegitimate approval of travel requests.

This paper is organized as follows. In Section II we provide
some background about logging and review related research
about logging in software engineering. In Section III we
motivate our approach using a running example. In Section IV
we explain our approach for supporting automated logging
for forensic-ready software systems. Finally, in Section V we
conclude the paper and discuss future research directions.

II. BACKGROUND AND RELATED WORK

A log is a collection of events. An event indicates an
occurrence of a state change in an environment [7]. For
example, an event in a web server log can indicate whether
or not a document was uploaded successfully. Logs can be
generated by different sources such as operating systems,
networks, digital devices, software systems [7]. Logs can
have different purposes, such as anomaly detection, problem
diagnosis, program verification, usage analysis, security mon-
itoring [20]. For our approach, we are interested in using logs
for security purposes to detect potential incidents determined
by the misuse of software systems.

To implement logging statements in software systems de-
velopers can use off-the-shelf libraries, such as Log4j [21]
for Java-based software systems. However, they still need to
rely on their knowledge and expertise [8] to decide: a) where
to log, i.e. the locations where logging statements should be
placed, and b) what to log, i.e. the information to be recorded
in the logging statements [20]. However, often developers do
not have expertise on how to log for security purposes, because
they may not be aware of how the software can be misused
and what information should be collected to detect potential
software misuses.

Researchers have proposed different approaches to give
suggestions to developers about where to log and what to
log, either for security and also other purposes. For example,
Fu et al. [22] performed an empirical study using two large
software systems at Microsoft to analyse the logging practices
of developers in the industry, focusing on where developers
log. In their study, they identify various categories of log
statements, half of them are used to record unexpected situa-
tions (e.g., exceptions or function return errors), and the other
half records normal execution information at critical execution
points. Also, Fu et al. found that developers decide to add
logging statements depending on exception types and context

information. These findings were validated through a ques-
tionnaire survey performed with 54 experienced developers at
Microsoft.

Zhu et al. [20] performed an empirical study with two
large software systems at Microsoft and two open-source
systems from GitHub. The purpose of the study is to develop
a logging tool, LogAdvisor, which could learn automatically
the common logging practice (e.g., where to log), from ex-
isting logging instances in the four studied software systems.
These two approaches [22][20] guide developers about where
logging should be performed, focusing on detection of run-
time errors in software written in C#. However, the logging
practices suggested in this work are not aimed to detect
security incidents caused by the misuse of software systems.

Other researchers have proposed approaches to protect log
files from tampering. Ma and Tsudik [23] propose a novel
cryptographic technique to ensure the integrity of audit logs
generated and stored on untrusted machines. Sinha et al. [24]
propose an infrastructure for secure logging that is capable
of detecting the tampering of logs by powerful adversaries
residing on the device where logs are generated. However,
this work focuses on protecting the integrity of logs but it
does not tackle the creation of logs necessary to detect security
incidents in software systems. Pinto Leite [5] assesses whether
it is possible to detect operating system intrusions from the
analysis of existing log files performed using search tools.
However, this approach relies on existing log files in Unix
Operating Systems and does not provide any suggestion to
developers about how to generate new logs inside software
systems for security purposes.

King et al. [6] assess whether general audit guidelines for
electronic health record mechanisms adequately address non-
repudiation. The authors found that only a small percentage
of event types that relevant for non-repudiation are recorded.
As a result, actions including the modification of patient de-
mographics and assignment of user privileges can be executed
without a trace of the user acting. Later, King and Williams [4]
perform an exploratory study to identify the current state of
logging practices in Health Care Systems. The authors base
their study on an existing logging guidelines catalog [25] and
existing 2014 Edition Approved Test Procedures for Health
Information Technology in the United States. The authors
define black-box test cases representing user actions that
should be logged, and define specific expected log output
based on the identified user actions. The authors observe that
after running the test cases only a small percentage of expected
log outputs are produced. King et al. [9] also performed an
empirical study with graduate-level computer science students
to evaluate whether their heuristics-driven method improves a
software engineer’s ability to identify mandatory log events in
open-source systems as compared with using existing industry
standards. Although this work [6], [4], [9] is relevant to
assess the maturity of logging practices in existing health
software systems, it does not provide explicit guidance about
how logging statements should be implemented. Moreover,
incidents and their criticality can vary depending on the



internal policies of the organization [7] and its assets. Also,
a different software system can be misused differently by
offenders. Thus, providing generic heuristics to guide logging
practices may be ineffective. Instead, the location and the
information to be recorded inside logging statements should
depend on the internal policies of the organization and the
software system itself.

Tan [15] suggests the notion of forensic readiness as the
capability of an organization to collect digital evidence from
different logging sources, to be prepared to investigate a
security incident. However, this approach suggests collecting
digital evidence from existing logs that are found in operating
systems, networks, and intrusion detection systems, without
considering logs generated by software systems. Pasquale et
al. [26] tailor the concept of forensic readiness to software
engineering as a property that encapsulates the capabilities of
the software to conduct digital forensic processes that maxi-
mize digital evidence [27] and produces evidence that satisfies
the legal scrutiny in a court of law [28]. Alrajeh et al. [19]
define a framework for evidence preservation requirements of
forensic-ready systems. This framework ensures that only the
minimum amount of data that is relevant to detect a security
incident is collected. This work [19], [26] represents a first
step towards implementing forensic-ready software systems.
However, more effort is necessary to guide the implementation
of logging statements inside software systems, to support the
detection and investigation of software misuses.

III. MOTIVATING EXAMPLE

In this section, we present a running example that we use
to motivate our approach.

Let us consider a Human Resources Management (HRM)
software system which has the following modules: 1) Em-
ployees: it allows adding, modifying, deleting and viewing
employees; 2) Users: it allows adding, modifying, deleting
and viewing users of the HRM software system and their
credentials; 3) Travel Requests: it allows creating, modifying,
approving, deleting and viewing travel requests. Furthermore,
the HRM software system has the following user levels or
roles: a) Admin: can have access to all of the modules of
the HRM software system; b) Manager: can only have access
to modules Employees and Travel Requests; c) Employee:
can only have access to module Travel Requests, and cannot
approve travel requests.

Our incident example is caused by an insider, Henry Smith,
who is the System Administrator of the HRM software system.
Henry is going on a business trip and creates a travel request
using the HRM software system, while his line manager,
Arthur Jones, is away on holiday. Henry uses his privileges
as a System Administrator to modify Arthur’s credentials and
impersonate Arthur, in order to approve his own travel request.

Fig. 1 describes the sequence of actions characterizing this
security incident.

1) Henry connects to the HRM software system with the
user level or role Admin.

2) Henry accesses the Travel Request module and creates a
new Travel Request.

3) The Travel Request is created and sent to Arthur. How-
ever, Arthur is on holidays and cannot approve of it.

4) Henry needs approval for his travel request and connects
as Admin to the HRM software system.

5) Henry goes to the Users module and modifies Arthur’s
password and exits the HRM software system.

6) Later, Henry misuses his privileges as a System Adminis-
trator because he impersonates Arthur, by connecting to
the HRM software system. The HRM software system
displays a message that: “A Manager has connected into
the HRM software system.”

7) Finally, Henry accesses the Travel Request Module,
reviews the travel request and approves it. The HRM
Software Systems displays a message: “The travel request
has been approved by Arthur Jones.”

Fig. 1. Incident example representing a misuse of the HRM software system.

This scenario represents a security incident because it
violates one of the organization’s policies, i.e. “only a manager
can authorize a travel request”. If adequate logging is not
performed, this security incident can go undetected or the
investigation about this incident may be difficult because
relevant evidence is missing to indicate the offenders’ identity
and the incident actions. Note that it is not possible to
prevent Henry from modifying users’ credentials, because he
requires this access right to perform his duties as a System
Administrator. Thus, it is necessary to augment the HRM
software system with the functionality necessary to ensure
accountability, which allows detecting software misuses and
identifying victims and offenders [29]. In other words, it
is necessary to implement logging functionalities that could
record the user actions that lead to potential software misuses.

IV. LOGGING TO DEVELOP FORENSIC-READY SOFTWARE
SYSTEMS

Fig. 2 provides a general overview of our approach, which
has three stages:

1) Incident Modelling: A security engineer, who is the one
in the organization that has security expertise, runs a soft-
ware system usage scenario that simulates the incident,
to generate an Incident Model. This Incident Model is a
UML sequence diagram that represents the steps involved



in the incident, without including the entire software
behaviour. During this stage, our approach allows the
security engineer to annotate the UML sequence diagram
including relevant information for logging, such as where
to log and what to log. The output of this stage is the
enhanced Incident Model with the annotations provided
by the security engineer.

2) Logging Instrumentation: The annotations produced by
the security engineer are used together with a control flow
diagram of the software system to determine the exact
location of logging statements and specific data that these
statements should record. This is important to ensure that
logging statements provide relevant information to detect
and investigate the incident. The output of this stage is
a file that specifies where to log and what to log in the
software system to detect the incident.

3) Logging Generation: Once the location and the informa-
tion to be stored in the log statements is determined,
our approach instruments the software system to inject
the logging statements to the designated software system
locations. This removes from the software developer the
burden of deciding where and what to log to detect
security incidents. When the software reaches the lo-
cations where logging statements are placed, a log will
be generated. Thus, the software will produce a log file
that can be analyzed to detect and investigate security
incidents.

Fig. 2. General Overview of our Approach

Now, we explain in detail the three stages of our approach.
The first stage, Incident Modelling (Fig. 2), allows a security

engineer, to run several software usage scenarios that simulate
the incidents of interest. For each incident, our approach
generates automatically an Incident Model, which is a UML
sequence diagram that only representing the sequence of
method invocations associated with the steps of the incident.
For our incident example described in (Fig. 1), a security
engineer, has to replay the steps of the incident on the HRM
software system.

To generate this initial UML sequence diagram, we took
inspiration from two approaches. Briand et al. [30] suggest
to reverse-engineer a Java Application. They create a UML
sequence diagram by instrumenting the application using
AspectJ, which is the implementation of Aspect-Oriented
Programming for Java [31], [30]. Labiche et al. [32] improve
the approach presented by Briand et al. [30] by dramat-
ically reducing the information collected at runtime. The
instrumented Java Application only collects the necessary
information about Java methods such as caller and callee
objects, method signature, class name and line number of the
call. Similarly to Labiche et al. [32], we instrument a group
of selected classes of the software system using AspectJ, to
capture the execution traces associated with the steps of the
incident. We collect the necessary runtime information about
Java methods such as caller, callee objects, method signature,
class name.

Once the initial UML sequence diagram is generated, our
approach allows the security engineer to annotate the UML se-
quence diagram, to include relevant conditions that determine
when logging is necessary and/or additional information that
should be logged. These annotations are related to entities that
exist in our software systems, such as Java Classes or database
tables. For our incident example, (Fig. 3) we will focus on step
3, which is highlighted in the rectangle. Here, we can observe
that the security engineer adds the following notes. The first
note (A) indicates that it is important to log who connects
to the software system because this allows identifying the of-
fender. In our incident example, we need to record that Henry
is the employee who connects to the HRM software system
using Arthur’s credentials. The second note (B), mentions that
is important to log whenever a user with the user level or role
Manager connects to the HRM software system. This means
that we are not interested in login operations to perform by
employees with user levels of employee or admin. The third
note (C) indicates that it is important to log whenever a travel
request changes to status Approved because at this moment a
security incident can occur. The output of this stage is a final
UML sequence diagram that contains the relevant annotations
from the security engineer about where to log and what to log
to detect the security incident.

The second stage, Logging Instrumentation (Fig. 2), re-
ceives as an input the final UML sequence diagram. Then,
our approach performs a control flow analysis of the incident,
using Soot [33], which is a Java product created by the Sable
research group from McGill University. Soot is a Java library
that can be included in a Java Application to create a control
flow diagram (CFG). In a CFD, Soot defines the entry and



Fig. 3. Stage 1: Final UML Sequence Diagram.

exit methods at every point in the graph [33]. While we are
creating the control flow diagram, we consider the annotations
from the security engineer to determine the exact location and
the specific information required in the software system to add
logging mechanisms to detect the incident. Additionally, while
determining where to log we consider the Java classes inside
the software system that are relevant such as the ones that
have access to the database and not the ones that implement
the graphical interface in the software system.

For our incident example, we illustrate the generation of
the control flow diagram for step 3 (Fig. 3), which is where
the incident occurs. Fig. 4, shows the control flow diagram
where the methods and the fields that are executed inside
the HRM software system for step 3, which is where the
incident happens. The LogIn, is the step indicated in the
Final UML sequence diagram where the user connects to the
HRM software system and it includes two methods inside the
HRM software system: getUserName (A) and getUserLevel
(B). The ChangeStatus is the other step described in the
final UML sequence diagram which corresponds when the
manager approves the travel request and it executes inside the
HRM software system just one method: save (C). Additionally,
to determine where to log and what to log, we consider
the requirements to make forensic-ready systems defined by
Pasquale et al. [26]: a) Relevance: Data preserved proactively
should be relevant to potential incident cases and able to sup-
port or refute hypotheses explaining how incidents occurred;
b) Minimality: Data preserved proactively should be minimal
and should not include any information that is unnecessary
for an investigation.

Fig. 4. Stage 2: Generating a Control Flow Diagram.

For our incident example, considering relevance and min-
imality to make our HRM software system forensic-ready,
we determined that the convenient location in HRM software
system (Fig. 5) to place logging statements to detect our
incident is the method save (C), because in this method
inside the software system, the following information can be
available to help us to detect our incident: UserName (A),
UserLevel (B), Travel Request Number, Employee Name and
Travel Request Status (C).

Fig. 5. Stage 2: Logging Instrumentation

While we are meeting the requirements of relevance and
minimality, currently our approach does not consider privacy
concerns such as GDPR.

The third stage, Logging generation, (Fig. 2) receives as
an input the file which contains information on the software
system related to where to log and what to log to detect the
incident. Our approach instruments our software system just
in the places where the incident is involved using Aspect J
to generate logs that detect the incident. We also use Log4j,
which is the Java logging framework to create logging state-
ments that generate log files. Log4j is a highly configurable
framework: It assigns levels of priorities to logs such as ALL,
TRACE, DEBUG, INFO, WARN, ERROR and FATAL; it
offers mechanisms to direct logging information to different
destinations like a database, file, console, UNIX Syslog [21]
and it allows that different types of output layouts in the logs
such as XML, HTML, text [34].

For our incident example, we receive the file (Fig. 5) (D)
that contains where to log and what to log. In this step,
our approach reads this file and creates logging statements
(Fig. 6) (A). Once, logging statements has been injected to
our HRM software system, the security engineer must run
again the HRM software system usage scenario that simulates



the incident and our approach will generate automatically a
log file (B) that detects the incident and says: ”The travel
request has been approved.” This log displays relevant fields
that provide useful information to investigate this incident
such as travel request number, the employee who requested
the travel request employee; who approved the travel request
approved by; from which computer the manager connected IP
Address.

Fig. 6. Stage 3: Logging Generation.

During the logging instrumentation stage, our aim is to
provide a practical way to make our software system to
comply with one of the security principles called: Information
Accountability defined as,”the use of information should be
transparent so it is possible to determine whether a particular
use is appropriate under a given set of rules and that the sys-
tem enables individuals and institutions to be held accountable
for misuse.” [35] Our approach, provides transparency and
accountability by generating a log file that detects a security
incident. This log file makes bad actions visible and who is
responsible to perform these actions.

Proposed Evaluation. To evaluate our work we will fol-
low an approach similar to the one proposed by King and
Williams [4]. They tested four popular health care systems
to assess whether sufficient logging was performed, to record
information about some of the most relevant software misuses.
Similarly, we aim to replay a set of relevant security incidents
on the software system instrumented with logging instruc-
tions. In other words, we will replay the message sequences
expressed in the sequence diagrams elicited during incident
modelling. Our objective is to assess relevance and minimality
of logs. To assess relevance we will verify that the logs
generated indicate the occurrence of the message exchanges
described in the sequence diagrams. We will also ensure
that logging is performed only when the logical conditions
indicated in the annotated sequence diagram are satisfied. To

assess minimality we will verify that no logging is generated
to indicate execution of operations that are not covered by
the sequence diagrams. We will also ensure that logs do not
record message exchanges that occur when the corresponding
logical condition in the annotated sequence diagram is not
satisfied. Finally, we will verify the possible downgrade in
performance introduced by logging operations. In particular,
we will compare the time to execute the security incident
scenarios in the software system instrumented with logging
with that necessary to replay the same scenario in the original
software system.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach to automate
the development of forensic-ready software systems. To the
best of our knowledge, this is one of the first approaches to
propose the automated generation of logging instructions that
can cover relevant security incidents.

For future work, we aim to develop a tool implementing the
three stages that our approach (Fig. 2). We envision the first
two stages of our approach (Incident Modelling and Logging
Instrumentation) to be the most challenging. For Incident
Modelling, we will instrument a designated set of relevant
software system components with the capability to detect
methods execution. When the security incident scenarios are
simulated on the running software, those instructions will
represent the method execution as a message exchange in the
sequence diagram. To annotate the sequence diagram, it will
be necessary to define a set of entities, which characterize the
software system state, and on which the logical constraints
can be expressed. To achieve this aim, we will take inspiration
from existing work on feature identification and reverse en-
gineering of statecharts. To support Logging Instrumentation,
it will be necessary to map each message exchange in the
sequence diagram to a subset of the control flow graph; this
will allow locating the position where the logging instruction
will be injected. In this stage, it is also necessary to consider
privacy concerns such as GDPR while collecting the relevant
and minimal data to detect a security incident. We will also
consider strategies to reduce the amount of logging performed
when security incidents have overlapping message exchanges
in their scenarios.

Finally, for Logging Generation, we will add an engine
that whenever log instructions have been injected and the
software system is forensic-ready, an alert will be generated
that says we should run again our software system and a log
message detecting the incident will be displayed. Additionally,
this engine will perform a deeper analysis of the log message
generated and could also encrypt the log message.

ACKNOWLEDGMENT

This work was partially supported by Science Foundation
Ireland grants 13/RC/2094 and 15/SIRG/3501.



REFERENCES

[1] Symantec, “ISTR Internet Security Threat Report Volume
23. February 2018,” p. 89, 2018. [Online]. Available:
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-
2018-en.pdf

[2] ——, “ISTR Internet Security Threat Report Volume
24. February 2019,” p. 61, 2019. [Online]. Available:
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-
2019-en.pdf

[3] B. Carrier and E. Spafford, “An Event-Based Digital Forensic Investi-
gation Framework,” Digit. Forensic Res. Work., p. 13, 2004.

[4] J. King and L. Williams, “Log Your CRUD: Design Principles for
Software Logging Mechanisms,” Proc. 2014 Symp. Bootcamp Sci. Secur.
(HotSoS’14)., p. 10, 2014.

[5] J. Pinto-Leite, “Analysis of log files as a security aid,” Procedings 6th
Iber. Conf. Inf. Syst. Technol. (CISTI’11)., p. 6, 2011.

[6] J. King, B. Smith, and L. Williams, “Modifying without a trace: general
audit guidelines are inadequate for open-source electronic health record
audit mechanisms,” Proc. 2nd ACM SIGHIT Int. Heal. Informatics
Symp., p. 9, 2012.

[7] A. A. Chuvakin, K. J. Schmidt, and C. Phillips, Logging and Log
Management. The Authorative Guide to Understanding the Concepts
Surrounding Logging and Log Management., 2013th ed. Syngress,
2013.

[8] G. Rong, Q. Zhang, X. Liu, and S. Gu, “A Systematic Review of
Logging Practice in Software Engineering,” Proc. Asia-Pacific Softw.
Eng. Conf. (APSEC’17)., p. 6, 2017.

[9] J. King, J. Stallings, M. Riaz, and L. Williams, “To Log, or Not to
Log: Using Heuristics to Identify Mandatory Log Events–A Controlled
Experiment,” Empirical Software Engineering, vol. 22, no. 5, pp. 2684–
2717, 2017.

[10] OWASP, “OWASP Top 10 - 2017,” 2017. [On-
line]. Available: https://www.owasp.org/images/7/72/OWASP_Top_10-
2017_%28en%29.pdf.pdf

[11] J. Valinsky, “Marriott reveals data breach of
500 million Starwood guests,” p. 2, 2018. [On-
line]. Available: https://www.cnn.com/2018/11/30/tech/marriott-hotels-
hacked/index.html

[12] Reuters, “Over 500m accounts hit in Mar-
riott data breach,” p. 2, 2018. [Online]. Avail-
able: https://www.rte.ie/news/business/2018/1130/1014341-marriott-
data-breach/

[13] A. Taylor, “The 16 biggest data breaches
of the 21st century,” p. 11, 2018. [Online].
Available: https://www.csoonline.com/article/2130877/the-biggest-data-
breaches-of-the-21st-century.html

[14] R. Rowlingson, “A Ten Step Process for Forensic Readiness,” Int. J.
Digit. Evid., vol. 2, no. 3, p. 28, 2004.

[15] J. Tan, “Forensic Readiness,” p. 23, 2001.
[16] N. Beebe, “Digital Forensic Research: The Good, the Bad

and the Unaddressed,” p. 15, 2009. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-04155-6_2

[17] A. Pooe and L. Labuschagne, “A conceptual model for
digital forensic readiness,” Procedings 11th Work. Inf. Secur.
South Africa (ISSA’12)., p. 8, 2012. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6320452

[18] M. Elyas, S. B. Maynard, A. Ahmad, and A. Lonie, “Towards A
Systemic Framework for Digital Forensic Readiness,” J. Comput. Inf.
Syst., vol. 54, no. 3, p. 21, 2014.

[19] D. Alrajeh, L. Pasquale, and B. Nuseibeh, “On Evidence Preserva-
tion Requirements for Forensic-Ready Systems,” Proc. ACM SIGSOFT
Symp. Found. Softw. Eng., p. 10, 2017.

[20] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning to
log: Helping developers make informed logging decisions,” Proc. 37th
IEEE/ACM Int. Conf. Softw. Eng. (ICSE’15)., vol. 1, p. 10, 2015.

[21] Tutorial Points, “log4j Overview,” 2019. [Online]. Available:
https://www.tutorialspoint.com/log4j/log4j_overview.htm

[22] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,
“Where do developers log? an empirical study on logging practices in
industry,” Procedings 36th Int. Conf. Softw. Eng. (ICSE’14)., p. 10,
2014.

[23] D. Ma and G. Tsudik, “A New Approach to Secure Logging,” ACM
Transactions on Storage (TOS), vol. 5, no. 1, p. 2, 2009.

[24] A. Sinha, L. Jia, P. England, and J. R. Lorch, “Continuous tamper-proof
logging using TPM 2.0,” Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8564 LNCS,
p. 18, 2014.

[25] J. King and L. Williams, “Cataloging and Comparing Logging Mecha-
nism Specifications for Electronic Health Record Systems,” in Presented
as part of the 2013 {USENIX} Workshop on Health Information
Technologies, 2013.

[26] L. Pasquale, D. Alrajeh, C. Peersman, T. Tun, B. Nuseibeh, and
A. Rashid, “Towards Forensic-Ready Software Systems,” p. 4, 2018.

[27] R. Mckemmish, “When is digital evidence forensically sound?” IFIP
Int. Fed. Inf. Process., vol. 285, p. 13, 2008.

[28] B. Endicott-Popovsky, N. Kuntze, and C. Rudolph, “Forensic readiness:
Emerging discipline for creating reliable and secure digital evidence,”
J. Harbin Inst. Technol. (New Ser., vol. 22, no. 1, p. 9, 2015.

[29] W. Benghabrit, H. Grall, J. C. Royer, and M. Sellami, “Accountability
for abstract component design,” Proc. to 40th Euromicro Conf. Ser.
Softw. Eng. Adv. Appl. (SEAA’14)., p. 9, 2014.

[30] L. C. Briand, Y. Labiche, and J. Leduc, “Toward the reverse engineering
of UML sequence diagrams for distributed Java software,” IEEE Trans.
Softw. Eng., vol. 32, no. 9, pp. 642–663, 2006.

[31] Eclipse, “Introduction to AspectJ,” Asp.
Program. Guid., 2003. [Online]. Available:
https://www.eclipse.org/aspectj/doc/next/progguide/starting.html

[32] Y. Labiche, B. Kolbah, and H. Mehrfard, “Combining Static and
Dynamic Analyses to Reverse- Engineer Scenario Diagrams,” IEEE Int.
Conf. Softw. Maintenance, ICSM, p. 10, 2013.

[33] A. Einarsson and J. D. Nielsen, “A survivor’s guide to Java program
analysis with soot,” BRICS, Dep. Comput. Sci. Univ. Aarhus, Denmark,
p. 46, 2008.

[34] A. Tomar, “Logging With Log4j in Java,” 2018. [Online]. Available:
https://dzone.com/articles/logging-with-log4j-in-java

[35] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum, J. Hendler,
and G. Jay Sussman, “Information Accountability,” Commun. ACM,
vol. 51, no. 6, p. 6, 2008.


